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INTRODUCTION

Almost every statistician has used simple linear regression

many times; it probably is the most well -used statistical procedure .

If there is more than one dependent variable present , we enter i nto

the realm of multivariate regression . In both univariate and

multivariate regression , we can estimate regression coefficients ,

find confidence intervals for the regression coefficients , and test

whether the regression coefficients are equal to a known matrix.

however another kind of problem exists in mu ltivariate regression ,

0 but does not exist in univari ate regression. In multivariate

regression , the regression coefficient matrix may not be of full

row rank , i.e., there may exist unknown linear restrictions on the

regression coefficient n’~trix . We may want to estimate the

regression coefficient met~-~ ~nd the unknown linear restrictions

under the hynothesis that the linear restrictions do exist. For

instance , when we estir~ te one 1inear restriction , we usually are

trying to find the linear combination of the elements of each

column of the regression coefficient matrix which equal some

unknown quantity .

We now define precisely the model ~nd hypothesis to which we

have been referring:

—~ - 
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x1 
= 
~
f1+e~

, i = 1 ,2,.. .,N,

B~~=aa ,

where x.~ is a p-dimensional vector of observations , a is the unknown

pxk (k > p) regression coefficient matrix , f1 is a k—dimensional

vector of dependent variables , e~ is a p-dimensional error vector,

B is a rxp(r9) matrix of linear restrictions , a is an unknown rxs(s<r)

matrix which provides a basis for the space spanned by the columns

of Ba , and a is a known sxk matrix. The matrix form of the above

equations is

(0.0.1) X = EF+E,

(0.0.2) Ba = cza,

where

0 X = (X i , X 2 1 . . . , X N),

F = l, t?2,.~~ ,1N)~

E = (e1,e2,... ,eN).

T. W. Anderson [1951a] found the maximum likelihood estimators

(MLE’s) of the parameters B, a, and E when a is the zero matrix.

Later, Villegas [1961] found the MLE ’s of B , a , ~~, and a in the

above model when F is the design matrix associated with the MANOVA

model and when B is a lxp niatrix. Villegas ’s model can be called

the single linear functional relationship model with replications

(Moran El 97l~ , Madansky [1959)). When F is the design matri x

associated with the MANOVA model , each column of is the mean

0

~

___
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0 vector for a group of observations. In many cases the number of

groups increases when the sample size increases . This situation

is itself a special case of the more genera l case where the number

of parameters increases as the sample size increases . Villegas

does discuss the consistency of his estimators when the number of

groups increases with the sample size.

In Chapter 1 , we estimate the parameters in the model and

hypothesis specified by (0.0.1) and (0.0.2). We also give several

special cases of our model , including several models which resemble

a model discussed by Gleser and Watson [1973]. Our discussion of

the consistency of the estimators is directed mainly to cases when

the number of parameters does not stay fixed as the sample size

increases.

0 One of the biggest advantages of getting maximum likelihood

estimators is that we can usually use these estimators in deriving

likelihood ratio tests . For many multivariate problems , the exact

distribution of the likelihood ratio test statistic is exceedingly

complicated. However the asymptotic distribution of -2 log A , where

A is the likelihood ratio test statistic is~usua 1ly a chi-square

distribution. In Chapter 2, we use the estimators we derived in

Chapter 1 to get the likelihood ratio test statistic for testing

H0: Ba = na versus H1 : Ba ~ aa.

Since the exact distribution of this statistic is intractable , we

find its asymptotic distribution . Our results show that the

asymptotic distribution of the test st~tist ic depends on how the
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number of parameters increases wi th the sample size. It is noteworthy

that in several cases , -2 log A ,where A is the likelihood ratio test

statistic,does not have an asymptotic chi-square distribution .

The basic model discussed in the first two chapters is commonly

called the classical multivariate linear regression model . Another

type of linear model , which has been discussed in the literature ,

is the “growth curves ” mode l (Cochran and Bliss [1948], Shrikhande

[1954], and Gl eser and 01km [1964, 1969]). In this model we observe

N independent pxl column vectors x~: i = 1 ,2,... ,N , which satisfy

x.~ = Fa+e1,

where F is a known pxq matrix, a is an unknown q-dimensiona l

vector and e~ is a p-dimensional error vector. This model has

been generalized by Gleser and 01km [1966] in their discussion

of k sample growth curves.

All these models , the classical multivariate linear model

and the growth curves models , can be generalized to a model first

discussed by Potthoff and Roy [1964] and later by Rao [1965] and

Gleser and 01km [1969]. We may write the model which we refer to

as the Potthoff-Roy mode l in the following way :

(0.0.3) X = F1 aF2+E

where X is a cxN matrix of observations , F1 and F2 are known

cxp (p < c) and mxN (m < N) matrices respectively, a is an unknown

pxm matrix , and E is a cxN error matrix. Each column of E is

distributed i ndependently wi th mean vector 0 and unknown covariance j
0 matrix Z.
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S Potthoff and Roy [1964] gave ad hoc tests of the hypothesis

(0.0.4) F3aF4 =

where F3,F4 and are known rxp (r < p), mxk (k < m), and rxk

matrices respectively. F1 and F4 are assumed to have full column

rank , and F2 and F3 are assumed to have full row rank. Rao [1965)

found the conditional likelihood ratio test of the hypothesis

stated above , and Gleser and 01km [1969] showed that Rao ’s condi-

tional likelihood ratio test is actually the unconditional

likelihood ratio test.

In Chapter 3, we work with the Potthoff-Roy model (0.0.3) and

estimate parameters under a hypothesis similar to (0.0.4). The

hypothesis we discuss is concerned with unknown linear restrictions

on the regression coefficient matrix. This hypothesis can be

written the following way :

(0.0.5) U1 aF4 
= ab ,

where U1 is an unknown rxp (r < p) matrix , F4 is a known mxk

matrix , a is an unknown rxs matrix , and b is a known sxk matrix.

We assume that the unknown covariance matrix ~ has the form G
2
~
Ic

where ~
2 is an unknown . In Chapter 3 we reduce the Potthoff-Roy

model and the above hypothesis (0.0.5) to a canonical form . We

also find the MLE ’s of the parameters in the general model (0.0.3),

(0.0.5) and in the reduced model. As in Chapter 1 , we discuss

consistency of the estimators when the number of parameters is

allowed to increase wi th the samp le size.

0 

~~- , . - - -~~~~
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Chapter 4 bears the same relationship to Chapter 3 that

Chapter 2 bears to Chapter 1. In Chapter 4, we derive the

likel ihood ratio test statistic for testing

H0: IJ 1 aF 4 ab versus H1 : U1 aF4 / czb.

We find the asymptotic distributions of the likelihood ratio test

statistic; these depend on how the number of parameters increases

with the sample size. In several cases, the asymptotic distribution

is not the usual chi—square distribution.

0

G

—- -- -~~~ -~~~- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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CHAPTER I

ESTIMATION OF UNK NOWN LINEAR RESTRI CTIONS
ON THE PARAMETERS OF THE CLASSICAL

MULTI VARIATE LINEAR REGRESSION MODEL

1.0 Introduction

In this chapter , we discuss estimation of the parameters of

the classical multivariate linear regression model (Anderson [1958;

Chapter 8)) when an hypothesis concerned with unknown linear restric-

tions on the parameters is assumed to be true. Section 1.1 contains

derivation of the maximum likelihood estimators (MLI’ S) of the

parameters ; while Section 1.2 derives consistency properties of the

MLE’s. We show that some of the estimators are not consistent when

the number of parameters jr the model increases with the sample size.

Several special cases of our model are discussed in Section 1.3

including the multivariate linear functional model (Madansky [1959],

Moran [1971], Sprent [1969], Vi llegas [1961]), and models proposed

by Kristoff [1973] and Rao [1973]. In all of our special cases , the

independent variables in the regression model are dummy variables.

1.1 Maximum Likelihood Estimation

Let our model be:

(1.1.1) x1 = a f. + e
~. 

i 1 ,2,...,N ,

0

— - - - --. . . .--~~-- . -. . --~~~ - ~~~~~~~~~~~~~ ~~~~~~~ -- - -~~ . , -~- - -~ - -- —-~~~~- - -— ~~
..---~----- --. -.-----
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where each x.~ is a p-dimensional vector of dependent variables , each

f~ is a k-dimensional vector of i ndependent variables or covariates

(k > p), a is an unknown pxk parameter matrix of regression coeff i-

cients , and t,ie es ’s are p-dimensional vectors of errors.

We assume that the ei ’s are statistically i ndependent of one

another , and have the same normal distribution with mean vector 0

and unknown covariance matrix z. We will be finding the maximum

likel ihood estimators (MLE) of E , a and two other matrices B and a

which satisfy,

(1.1.2) B E = c*a,

where a is a known sxk matrix (s < k) (k-s > p), B is an un known rxp

(rip) matrix and a is an unknown rxs(s<r) matrix. We are concerned with

, cases in which either a has full row rank or a is the zero matrix ,

i.e.,we are testing B a = 0. It should be noted that if a is not

the zero matrix and is not full row rank , we can reparametrize so

that our resulting matrix will be full row rank. We derive the

MLE ’s of the parameters when a is full row rank. Since the proof

is similar (actually easier) when a is the zero matrix , we will

merely state the results in this case. In all of ou~’ special cases

(see Section 1.3), a = (l,l ,...,l) or a is the zero matrix.

Anderson [195la] considered the above probler i when a is the

zero matrix. His derivation of the MLE ’s uses Lagrange multipliers

and differentiation of the likel i hood function . A derivation , similar

to the one we give when a has full row rank , could be used as an

alternative method of obtaining and verifying the MLE’ s in Anderson ’s

0 
problem . We believe that that derivation would be simpler and more

‘I
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intui tive than An derson ’s. Since we would not employ differentiation ,

we woul d not have to worry about saddle points , etc . In his paper,

Anderson [l95la] also g~ves metho ds of generating confidence intervals

and likelihood ratio tests of various hypotheses.

Our computations will be simplified gr~itly if we wri te (1.1.1)

in the followin g way :

(1.1.3) X = a F + E,

where

X = (x1,x2,... ,xN),

F (f1,f2,...

E (e1,e2,. .. ,eN).

0 

We will call X the observ ~o’~ ~atr ix , F the cova riate matrix an d

E the error matrix . We w i ll assume that F and a have full row rank.

Maximiz ing the likelihood with respc ct to many parameters can be

done in several ways. One w~~v is to: 1) 4 i x one of the parameters

(i.e. treat one of the parameters as fixed or given ); 2) max imize

the likelihood with respect to the other parameters (note: the derived

MLE ’s of the other parameters will be Functions of the fixed parameter);

3) substitute the derive d MLE ’s of the other parameters back into the

likel ihood ; and finally 4) maximi ze the likelihood with respect to

the parameter that had been fixed. We will be following this method ,

with B treated as the fixed parameter.

0 

-.~~~~~~~~~--—~~~~~~~~~~~~---~~~ -~~~~ --  

-
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Part I. B fixed or given

We now transform X into a form in which the proper estimators

of the parameters are easy to see. Let C be a p-rxp matrix which

satisfies CC’= ‘p r  and CB’ = 0. Let

/Zl\ /BX
(1.1.4) z =(  J = (

\Z2/ \CX

Each column of Z is distributed independently wi th a p-dimensional

normal distribution having covariance matrix

fui 1i ~l2\ 
(BEB’ BsC’

1 = 1
\~2l 

‘
~
‘22J \CEB’ CEC’

The mean of Z is

0 E(Z) = =

Let

fv1\ /v11 v 12\ fz1\
= ( J = ( ) =( J (F’ (Fr’y~ ,L),

\~2J \~2l “22/ \Z2/

where L is a NxN-k matr ix which satisfies L’L = 
~ -k and L’F = 0.

Note that

1
E(Y) = E [( z ) (F ’ (F r t ) ~Th,L)] ,

2

= ( )(F’(FF’)~~ ,L).
C=F

fcz~(FF’)~ 0

0
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p Since (F’(FF’r~,L) is an orthogonal matrix , each column of V is

independently normally distributed with covariance matrix ~~ .

We now have transformed the data X into a form in which it

is easy to find the estimators. Let us write the joint distribution

of V in the following way :

(1.1.5) f(V) =

where f(Y21 1Y 11 ) indicates the conditional density of V21 given V 11 ,

f(Y11 ) indicates the margina l density of Y11 , etc . Since the

columns of V are independent normall y distributed random variables ,

all of the densities in (1.1.5) are norma l densities.

The parameters in our transformed model are cz,Ca , and 4. An

equivalent parametrization is

and 
~22.1 

= 
~~~~~~~~~~

We note that in (1.1.5) only f(~21 lY 11) depends on C:, and only

f(Y 11 ) and f(Y21 1Y 11 ) depend on ~ in the ir parameterization s .

Thus , we begin by findin g the MLE of Ca assuming that

and a re f i xed . We know that

f - _ _ _ _ _ _ _ _  
1 -~(tr o~~~,(Y21 -u 21 )(Y21 -u 21)’)

(Y21 1Y 11 ) 
- 

k/2~~~ T h )~
•7
~ 

e

~22.l ~

(1.1.6) 
~ k/2 (2~~T~~r)k/21422.1 1

where u2~ = E(Y21 jY 22) = Ca (FF’)~ +

If we pick C~a so that

(1.1.7) V21 C~ (FF’)~ + ~~~~~~~~~~~~~~~~ = 
~2l’

~
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then it is clear that f(V21 1V 22) attains its maximum (1.1.6). We
may rewrite (1.1.5) to get

(1.1.8) f(V) 
~~~~~ k/2 (p-r)k~~ 

f(V11 )f(V 22JV 21) f(Y22 ),
~22.1

with equality when (1.1.7) holds.

We next maxim i ze the right-hand side of (1.1.8) with respect to
a, treating ~~~~~~~~~~~~~~~~~~~ as fixed . We know that

____________ 

-
~~~ tr4~~[(Y1 -aa(FF’)~)(V 11 -aa (FF’)~)’]11 

- 

14 1
k/2(2)rk/2 

e

Using the theory of multivariate regression , we get

1 ~ triPj~(V 11 Mv~1 ),(1.1.9) f~~11 ) 
~~~ j k/2(2 yk/2 e

0 
where M = I-(FF’)~ a ’(aFF ’a ’)~~ a(FF’)~. Equality in (1.1.9) occurs
only when

(1.1.10) = V11(FF ’)~ a ’(aFF’a ’y
1 .

Substituti ng (1.1.9) into (1.1.8), we get

-
~i tr 4~~ (V 11 My~ 1 )

(1.1.11) f(V) 
~~~~ k/2,2 )Pk/21 ~~~ 

f(V22!V 12 ).f(V12).
~22.1

We now maximize the right-hand side of (1.1.11) with respect to

~l1 
keeping 

~22.l 
and 421(~11 Y~ fixed. Since

~i — l 
~ ~~

,

~ rip11 12 12
f ( V 12 ) = 

~ J (n-k)/2 (2)(N-k)r/2

0

-- .- —-~---.- -,- , ____
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(1.1.11) can be written

~~~~
. tr~~~(V12Y~2+Y11 MY~1 )

1(v)  < 
e 

N/2 (pk+ (N-k)r)/2 k/2 22 1
~ l2~ ’~p11~ (2~)

where f(V221Y 12) does not depend on ~~~~~~~~ 

Using Lemma 3.2.2 of

Anderson [1958], we have

1
e~~ .r (V Y. )

(1.1.12) f~~ ~ N/2 (pk+(N-k)r)/2 k/2

where 
~ii = 

~~12~12 
+ Y 11MY .j 1)/N.

Finally, we maximize the right—han d side of (1.1.12) with

respect to 
~21~’1l ~ 

and 22 .1~ 
We know that

— l 
~~
., —1 ., —l

f(Y221Y 12) — e’ 
tr~221~~22~~21 ip 11 Y12 i 22~~2l~ 11 12

k/2 N/2~.. ~(N- k)( p-r ) /2‘p 22.1 ‘
~2?.l ~~~

e~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(1.1.13) N/ 2 f~~~ ( N - k ) ( p - r ) / 2

with equality only when

7 ~— l ~ip2l~ ’pll~ ‘22 ’l2~~l2 l2~

Using Lema 3.2.2 of Anderson [1958],we have

f(V JV ) -
~~

- N(p-r)( .1.14) k/2 ~ N/2,2 .JN-k)(p-r)/2p22.1 ~22.l “ ~
/

C
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where

~22.l 
= 

~ 
(V 22(I—V .j 2(V 12v~2Y

’V 12)V~2).

Combining (1.1.12) through (1.1.14), we get

(1.1.15) f(Y) < 
1 •e~~ 

Np
(2,r’~ 

p) /2( N/2
“1 1 ‘l’22.l

There will be equality in (1.1.15) if

C~ =[V21 (FF’)~~ - (‘p 2~’p~~)(V 11 -&a(FF’)~)](FF’)~~.

& = Y11(FF’)* a’(aFF’a ’)~~,

~2l~~l1~ 
= V22Y~2(Y12V~2Y

1 ,

~l1 = ~ (Y 12V~2 + Vll (Ik_ (FF’)
~ 

a ’(aFF’a ’~~
1 a(FF’)~ )V~1)~

~
‘22.l = N (Y22(IN k ~Yj2(Yl2Yj2Y

1V l2 )Y~2
).

Now we go backwards and express a and & in terms of X. After a

little simplification , using the facts that

= (B’ (BB ’)1 ,C’),

C c  = I~-B’(BB’Y
1B~

LL’ = ‘N -

we obtain

(1.1.16) a = XA — X( I N_AF)X ’B ’(BX(I N_AF)X ’B’Y~BX(A_G),

(1.1.17) u BX(F’a ’(aFF’a ’~~~),

0

— -~~~-.- -- --- ---.- ~~~~~~~~~
-

~
--- 

-- . — ----- —~~~~~~~~~~~~~ ---- - ~~~~~ ---.--
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where

(1.1.18) A

G = F’a ’(aFF’a ’Y~a.

We can also go backwards and find ~~ . When we do this , we get

= N~~(X- aF)(X-aF)’.

We may summarize our results so far in the following theorem .

Theorem 1.1.1 . When B is fixed , the MLE of a , :, and ~ in the model

given by (1.1.2) and (1.1.3) are

& = BXF ’a’(aFF’a ’)~~,

= XA_X(IN_AF)XB ’(BX(I N
_AF) X’B’)

~~
BX(A_G),

=

0 where A and G are given by (1 .1.18).

Part II. Substitution of R ters back into the likelihood and
max imiz ation with res ect to B.

If we substitute the estimators of a , a , given in Theorem 1.1.1

(note: they are functions of B) into the likelihood for X , we find

that

(1.1.19) max log f(X) = - 
~~
. pN log 2ii— .

~~
- N log l~l - 

~~
- pN .

C= ,a,ip

Maximizing (1.1.19) wi th respect to B is equivalent to minimizing J~
j

with respect to B. After simplification we get

(1.1.20) I z I = —
~~~ 

w I .
~~4i-

0 where

_ _ _  _ _  _ _ _ _ _ _ _
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(1.1.21) W =X(IN_F’ (FF’)~~F)x’ ,

(1.1.22) 1 =X(IN~F’a ’(aFF’a’y
1aF)X’ .

Note that in terms of MANOVA concepts , W ca;~ be thought of as the

within covariance matrix and T as the total covariance matrix.
-.. ‘ 1

Let U = N ~ BW 2 . Then (1.1.20) becomes

(1 .1.23) ~I = —j~ w i

For purposes of minimizing (1.1.23), we might as well assume that

uu’ = I,, for if UU’ doesn ’t equal the identity matrix , there exists

an invertible matrix H such that U* = MU also minimizes (1.1.23)

and U*U*’ =

~ uu’ = I,.,. Theorem 10, page 129 of Bellman [1970] tells us

that the minimum value of ~ is

(1.1.24) I~1 = .
~~~~ 

W~ ~~~~~~

where A
1 

is the ith largest eiqenva lue of W ~ I W ~. Let F be a

matrix whose columns are the eigenvectors associated with the r
-~~ ~~

.

smallest eigenvalues of W~~ TW ~. If we choose U to be F , then

the right-hand side of (1.1.23) achieves the minimum value of 1 E 1

as seen in (1.1.24). Thus , i f  we let

(1.1.25) = N~~ rW~~,

then the likelihood function is maximized . It is easy to show that

the columns of fi’ are themselves eignevectors of W~ T corresponding

to the r smallest elgenvalucs of W~
1 T .

_ _ _  _ _ _ _ _ _ _ _  ~~~~~~~~~~~~



We suniiiarize our results in the following theorem.

Theorem 1.1.2. The MLE of B , a , a , and ~ in the model given by

(1.1.2) and (1.1.3) assuming a and F are full row rank are:

& = ~XF’a ’(aFF’a ’)~~,

= X (F’(FF’) )-WB(BWB’) (~X(F’(FF ’~~
1 -F’a ’(aFF’a ’~~

1a)),

= N~~(X - ~F)(X -

where

w

I =X(IN-F’a ’(aFF’a ’Y
1aF)X’ ,

and the columns of B’ are the eigenvectors corresponding to the r

smallest eigenvalues of W~ I.

Remark 1. If we multiply ~ on the ri ght by any invertible matrix , I
the resulting matrix also m~xirni zes the likelihood since if B* = MB ,

IHI / 0, then

J B*TB*~1 Jj~ JB H H BT B’ ‘
~~~j J~~J

I B*WB*hi J R~w~ ’H’~ JH I .IBWB ’HH L BWB ’f

Remark II. All matrices which maximize the likelihood are of the

form HB for some inver tible H. We will not prove this , since a proof

of the assertion is strai ghtforward .

Remark III . We have been c~ssuriing that F has full row rank. We now

demonstrate how to reparametriz° so t~’at ~.he results in Theorem 1.1.2

o can be applied when F is n.~ .~f full row rank . Ac ç ur r c c(c<k) is the 

-,.-- ~~~~~~~ ---~~~ -.-~~~~~~ ,- -  .~~~~~~ ~~~~~~~~~~~~
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rank of F, and c-s > p. Let

(1.1.26) F = (r1r2)(~~)u.

The right-hand side of (1.1.26) is the Eckart-Voung decomposition

where U and (r1r2) are orthogonal matrices and 0 is a diagonal

invertible cxc matrix. Now

=

= (:r1)(D,0)U,

= E*(D,0)U =

where ~* = and F* = (D,0)u. Since F* is full row rank , we may

use Theorem 1.1.2 to get the MLE ’s of the parameters. If ~ is the

MLE of ~* , we have

•
~ ~r1

,

= (~*,p)(
l ),
2

where P is any finite pxk-c matrix. Usually when F is not of full

row rank there are restrictions on a. We can pick P so that

satisfies those restrictions .

We now state a theorem which gives us the MLE ’s for our model

when a is the zero matrix:

Theorem 1.1.3. The MLE of B, a , and ~ in the model given by

(1.1.2) and (1.1.3) when a is the zero matrix ,i.e.,(l.l.2) becomes

B~~=0are :

0

~
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o = x(F’ (FF’)~~) — WB (BW B ’)~~(Bx (F’ (FF’)~~)),

= N~~(X- F) (X : F ) ,

where

w X(IN-F’(FF’Y~
F)x’ ,

T = X X ’ ,

and the columns of B’ are the el genvectors corresponding to the

r smallest eigenva lues of W~
’1 T.

Let us now consider the model of Theorem 1.1.2 with one change -

namely, instead of assuming that each e~ is independently norma l ly

distributed with common covariance matrix z, we now allow the es ’s

to be jointly normally distributed wi th mean vector 0 and

(1.1.27) cov(e~~e.) = ~~~ ~ ,

0 

where K = (ks.) is a known invertible matrix. The maximum likelihood

estimators of a , B , a , and ~ are easy to compute , using Theorem 1.1.2

and the fol l owing l emma :

1
Lermia 1. Let Z = XK~ (X comes from our new model), then

E(Z) = ~FKTh and each column of Z is independent with a p-dimensional

normal distribution having covariance matrix E.

Proof. Since Z is a linear combination of normally distributed

random variables , it is itself normally distributed. Further ,

1 ..1
E(Z) E(XK~~) (E(X))K~~ = aFK ~~

‘
.

Let (m’3) K~~. Then

o 
.

•1



~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

cov(Z Z~) = E(Za
_V
a)(ZB

_V
~
)’

= E( E (x 1 — :f .)m
’
~ m~

i (x .-af .)’
13 1 3 3

= E m’
~ m~

3E(x 1 — af 1 )(x.-:f.)

= ~m~~m
8
~k E

=~~ —z ,

where a is the Kronecker Delta function . Q.E.D.

If we transform X as prescribed in Lemma 1 , the resulting

model exactly corresponds to the model in Theorem 1.1.2. We therefore

have the following result.

Theorem 1.1.4. The maximum likelihood estimators in the model

given by (1.1.2) and (1.1.3) with the fol l owing change ,

cov(e1
.e
3
) ~~~~~

where (k~~) = K is known , are:

= BX(K~~F~a I)(aFK* a tY~
l ,

= XK 1 F’(FK 1 F’Y 1 
- wB’ (BwB ’~~

1 (Bx.

[K~~F’ (FK
1 F’ )~~-K*’a ’ (aFK* ’ a ’ )~~a]) ,

=

where

w = X (IN~K
F’(FK

~~
F’Y 1 FK

~~
)X’ ,

T = X(IN~
K F ’ a ’(aFK F’ a ’Y

~
aFK

~~
)X’ ,

the columns of B’ are the r eigenvectors associated with the r

smallest eiqenva lurs of W 1T. 

—- 
-

~~~~
--—-.--- --

~~ 
- .--~——— .— rn---- - -- ~~~~~~~~~~~~~~~~
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1.2 Consistency of the Estimators

As the number of observations gets large , it is important to

know what our estimators converge to. In most statistical problems

the number of parameters stays fixed as the sample size increases .

However , in this section we will be finding out what our estimators

from Theorem 1.1.2 converge to when the number k of columns of a

is allowed to increase with the sample size. The elements of

our a matrix are what Neyman and Scott [1948] have called

“incidental parameters ” . When there are incidental parameters

present , some estimators (as in our case) may turn out to be

inconsistent. We will not discuss the consistency of the estimators

in Theorem 1.1.3 or Theorem 1.1.4 since it is clear that we have

analagous results. In our discussion , p (the dimension of the

0 dependent variable), r ( the row rank of B) and s (the column rank

of a) are assumed to be fixed. It is evident that

t = u r n N

is a measure of how fast the number of parameters increases with the

sample size , N. We will assume that t is always greater than zero

and less than or equal to one. If the number of parameters stays

fixed , t will equal one. We will be concerned with the consistency

of B , a , and ~ . We will first discuss the consistency of B and a.

In order to make a discussion of the consistency of B ,cz

meaningful , we will have to place restrictions on B and B which

will make these matr ices unique. It should be remembered that if

B ,a maximize the likelihood , then so do HB , Mu where H is an
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invertible matrix. In fact al l MLE of B ,cx wi l l  be of the form

MB , H~z for some invertible matrix H. Similarly (B,a) sa tisfy

(1.2.1) B: aa ,

if and only if HB ,F-la satisfy MB : = Ha , where H is an invertible

matrix.

Let B ,a be a pair of matri ces which satisfy (1.2.1). By

requiring B to satisfy a number of restrictions , (B,a) will be the

unique matrices which satisfy (1.2.1). We will show that if B and u

are MLE of B and a, and if B satisfies the same restrictions as B,

then B,a converge almost surel y to B ,ct. We will be showing the

above for only one particular set of restrictions. However , it is

clear that if one set of MLE (B1,a1 ) converge almost surely to

B1, cz1, where B1 and B1 satisfy one group of restrictions , then

any other set of MLE B2,cx2 will converge almost surely to B2,a2,

where B2 and 82 satis fy another group of restrictions , provided

the respective restrictions make Bi and 82 unique.

Let B,a be a set of matri ces which sati sfy (1.2.1) and let

B* (B
~

1B1~
Ir) = B~

1 (B1,B2)= B~~(B),

= B~
1a,

where B (B 1,B2), B1 : rxp-r , and 82: rxr. B* is the only matrix

with its last r columns being the identity which satisfies (1.2.1).

Similarly, if B1,~iare maximum likelihoo d estimators , we can generate

another set of maximum likelihood estimators B*,a* where 8* has the

identity matrix as its 1 ast r columns:

0
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0 

= ~~~~~~~ = ~~~

1;

Hence , 8* is the only MLE of B which has the identity for its

last r columns. We will show that B*,a* converge almost surely

to B*,a*.

Lemma 1. If N-k ~ then (N-k~~
1 W goes almost surely to ~~.

Proof. Recall that

W = X(IN-F’(FF’Y
1 F)X’ ,

(:F+E)(IN~
F’(FF1)*)(aF + E)’ ,

= E(IN~
F’(FF’Y1 F)E .

0 Each column of E has an independent normal distribution with mean

vector 0 and covariance matrix ~~~. By Theorem 4.3.2 in Anderson

[1958], W is distribut e~i the same way f:.s

N-k

i~ l ~

where u~ are independent N (0,:) random varia bles. We can conclude

t’~at N—k
(N—k Y ~ 

~~~ 

u .~ u~

converges almost surel y to ~~. Therefore (N-k)~~(~i ) goes almos t

surely to ~~. ~.E. D.

Lemma 2. Let z1 z2... 
be independent idc •rt ica ll v distrib uted random

variables with me~ns 0 aH common fin i te vari~ n .~~ . Let b~ m be any

0 
‘ 

-, .- .~~~~ “-. —- .-- .--- .~~~~~~~~~ -.-. ~~~~~~~~~~~~~~~~
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array of real r~u~ibers m n n = 1 ,2,... satisfying

lirn ~ b2 = v , 0 < v < = .,nrn

then n~~ m~l 
bnmZm goes to 0 almost surely.

Proof. The proof is in Chow [1966]. Q.E.D.

Lema 3. Assume that

R = u r n  N 1 :F(IN~
Ft a I (aF FI a6y laF)F1 a 1

exists and is finite , then

(1.2. 2) N 1 E(I N_ F’a l (aFF t a ’Y ’aF)F’:’

goes almost surely to zero .

Proof. Consider the i ,jth element of (1.2.2). That element is the
1

product of the ith row of N~~ E and the jth column of

(1.2.3) N
~
(I
~~

F’a ’(aFF ’a ’y’aF)F’ a ’ .

Each element in the ith row of E is independent wi th mean 0 and

common variance. The sum of the squares of the elements in the

jth column of (1.2.3) is the j,jth element of

N 1 :F(IN~
r1 a ’(aFFl a 1)

~~
aF)F’a ’ .

By our hypothesis, this element converges to something finite as N

goes to infinity . By Lemma 2, the i ,jth element of (1.2.2) goes

almost surely to zero . Q.E.D.

~ 

.- - .  .. . -~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~~~~~~~~~~ --- -~~~--~~~~
,- -.—~~~~~ -.
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Lemma 4. Assume that R (as defined in Lemma 3) exists and is finite, then

goes almost surel y to R+E .

Proof. Recall that

N 1T N 1X ( I N-F’a ’(aFF’a ’Y1aF)X’ ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(1.2.4) = N aF (IN~
F’a I (aFF1 a ’ylaF)F a 1 +N*(iN~

FI a (aFF1 a~y
laF)F1 a I +

N
_ a aF(IN~

F1 a I (aFFI a a F)E1 +N~~E(I N~F1 aI(aFp a~)
l aF)E .

By our hypothesis the first term in (1.2.4) converges to R . By

Lenina 3, the second and third terms go almost surely to zero. If

we use Theorem 4.3.2 in Anderson [1958], we find that the fourth term

in (1.2.4) has the same distribution as

N-s
U. U,’,

i~ l 1

where u1 has a norma l distribut ion wit : mean vector 0 and covariance

matrix z. u 1 and u~ are independent if i ~ j. We know that
N-s

(N-sY 1 

~ 
u~u ’ goes almost surely to ~~. Since s is fixed as N

goes to infinit y we have that N
~~

E(I M~F’a ’(aFF’a ’)
~~

aF)E ’ a.s.

Usin g all of the above arguments , we have goes almost surely

to R+~. Q.E .D.

Lemma 5. The columns of B*’ are ei genvectors of I~ -Z ’R corresponding

to eigenvalue one.

Proof. We know that for every N

0

,.

~

-- - -

~ 

- - ~~~~~~~~~~~~~~-~~~~~~-~~~~ 
,.
~~~~~~~~~~ .
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P(l aF(IN
_ Ft a (aFF (a1Y~

laF)F~a 1B*t =

~~~~~~~~~~~~~~~~~~~~~~~~~ = 0.

Because of the above RB*I = 0. We therefore have

= 8*’ . Q. E.D.

Theorem 1.2.1. Under the assumptions of Lemma 4 and assuming R is

of rank p-r , 8* is a strongly consistent estimator of 8*.

Proof. By Lemma 1 , we have (N-kY ’W a~s. ~~~. By Lema 4 ,

N~
1T a4s. R+~. Combining these statements we get

((N—k)W) 1 (N 1T) a~s. 
~~

1 (z+R) = I~+~~
1R.

O 

Since u r n  = t > 0, we have

a~s. (1/t)(I~+~~
)R).

Since the eigenva lues of a matrix are continuous functions of the

elements of that ma trix , the elgenvalues of W~~(T) coverge almost

surely to the eigenvalues of l/t(I~+~~
1R).~ Since R is positive

semidefinite of rank m-r and 5 is positive definite , the smallest

eigenvalue of l/t(I~+L
1R) is lit. It has multiplicity r. The

r smallest eigenvalues of W1 (T) must go almost surely to lit .

Let B~ be the estimator of 8* if we have N observations. Let be

the estima tor given in Theorem 1.1.2 
~
8N satisfies N

1BNWB~ 
= Ir)

used to generate B~ , i.e.,

0

~~~ri~~  
- 

~~- —~~- —.~~~—.
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(~~
2) 1

~~
1)
~ Ir) ~~2) (~(l)~(2)) = B(2) C B )

where BN 
= (8(1) 8(2)) Because N ’BNWBN ’ = ‘r and W

1W conver ges

almost surely to t~5, is bounded almost surely. Let us pick

any subsequence of 8N~ 
Since BN is almost surely bounded , there

must exist a subsequence of this subsequence which converges. Let

B~ denote the convergent subsequence. Let C be defined by
N

lim B = C.
N-a ~N

Every column of C’ is the limit of a sequence of eigenvectors of

W 1 (T) associated wi th an eigenvalue which goes almost surely to lit.

Since W~~(T) converges almost surely to lit (I+~~
1R),each column of

C must equal some eigenvector of i/t(I+~~~R) associated with

0 eigenvalue l/t. Since

u r n  
~ N) 8~ 

(w)B’ = tCSC’ = 1
N-’o N ~N 

r

c is of full row rank. C must span the space of eigenvectors of

(1/t) (I+E~~R) associated with l/t. By Lemma 5 , B* also spans this

space. Therefore there exists an invertible matr ix V such that

B* = (B~
2
~~ B~~~,I) = VC.

If C = (c ,C (2 ) ) , v must equal (C(2)Y1 and

8* = (C(2)y1 C.

Let I IA ! I denote the largest value of any element in A. We

know that 

--
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3 
I1 H = H (B ))~~.B~~_ (C

(2))_1 c I I ,

!IB~ ~B* !I ~~. II (B~
2
~Y

1B~ -(C~
2
~Y

1B~ + I! (C~
2
~~~

’B~ -(C~
2
~
y1C II ,

N N N N N
(1.2.5)

II -B~j J ~ H (B~ )H lJ (B~
2 1 (C~

2
~yTh + iI (C (2)Yh

II JJ B ~ -C JJ .
N N N N

The first term on the right-hand side of (1.2.5) is arbitrarily small

since I }B~ H is almost surely bounded and B
11 

differs from C by an
N N

arbitrarily small amount when N is large . The second term vanishes

si nce (C~
2
~y

1 is bounded and B goes almost surely to C. We

therefore have that B~ goes almost surely to 8*. We have shown that

for any subsequence of B~, there exists a subsequence of that

subsequence which converges to 8* almost surely. 8* must converge

o almost surely to B*. Q.E.D.

Theorem 1.2.2. If N (aFF’a ’)~ converges to a matrix with all

elements finite then a* is a strongly consistent estimate of a* .

Proof. Note that

= B*XFI a S (8FFP a ’) l ,

= B*(aF+E)(F’a ’(aFF1 a ’)~~),

(1.2.6) = B*:FF’a I (aFFI a ’ )~~+B*E (F1 a ’ (aFF’a ’ )—l

Since 8* goes almost surely to 8*, the first term on the right of

(1.2.6) goes almost surely to

B* FF’a ’(aFF’a ’)~ = a*aFF~a 1 (aFFI a IY~ =

0

hut!: . .,- . . — - -—~~~~~~ -. . - - . - - ,~~~~~~~-- - -—~~~~~ - —--- . -- —-. ~~~~~~~~~~~~~~~~
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By apply ing Lema 2 in a way similar to what we did in Lemma 3,

we know that N (aFF’a ’) converging to a finite matrix implies

that E F’a ’(aFF’a ’~~
1 goes almost surely to zero. We can conclude

that B*EF’a I (aFFI a ’Yl converges almost surely to zero. Q.E.D.

We now must discuss the consistency of 5 . It should be noted

that the MLE’ s of a and S are unique ; they do not depend on the

choice of MLE of B and a. Because of this , we will use 8* as the

MLE of B and ci* as the MLE of a . We have seen that

=

= N 1 (X~XF ’(FF’) 
1 F+WB*(B*WB*’) ‘(B*X(F’(FF’) l F —

F’a ’(aFF ’a ’Y~
1aF)~

(X_XF ~(FF’)
l F+WB*(B*WB*’Y~

l (BX( F ’ (F F’ )~~F -

0 F’a ’(aFF ’a ’Y1aF)’ .

After a little simplification which uses the definitions of W and T,

we get

= N l W+N WB* (B*WB*t)~~B*(T_W)B*I (B*WB*Iy~ B*tW .

From our previous lemmas and theorems we know that
a .s.  .~ a.s.

N 1W -
~ 

t.z, B* B*,
a.s.

N T -
~ z+R , RB*’ = 0.

Using the above we have
~a .s. ‘I

S -~

0 =

~ 

:: .. :._.~~~. .
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) 
Since the above expression is valid regardless of which B in the

class of B ’s which satisfy Ba = aa we take, we have the following

theorem:

Theorem 1 .2.3. If we assume the conditions given in Lemmas 3 and 4

and in Theorem 2.2.2, then ~ goes almost surely to

(1.2.7) t.s + (l-t)SB’(B5B’~~
1B’S.

The most startling thing about the above is not that E is not

a consistent estimate; when the number of parameters gets large , the

estimate of the covariance matrix is usually inconsistent. What

makes the above unusual is the fact that the matrix S goes to is a

function of B. The second term in (1.2.7) is very unusual.

We can not discuss the consistency of :, since it is not a

fixed matrix of parameters . It is interesting to consider to what

N~~EF (I-F ’a ’ (aFF’ a ’ )~~aF)F’E

converges almost surely. We might expect it to converge almost

surely to R as

N :F(I-F’a ’(aFF’a ’) 1aF)F’a

does. However , if we went through a proof , we would firi it actually

goes almost surely to

R+(l-t)s +-(l-t)zB’(BsB’) 1 B’ s.

. 0  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1.3. Special Cases

Special cases of the models we discussed have come up many times

in the literature . We will be discussing cases when the F matrix has

the fol lowi ng form:

/1 l . . . l 0 0 . . . 0 . . . 0 0 . . . 0
(1.3.1) F =  ( 9 ~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~
If the F matrix has the above form , our additional information

consists of knowing some of the observations come from the same

mean,i.e. ,we have replications at each mean. The model could be

wri tten this way :

(1.3.2) x. . = + e..; i l,2,...,k; j =
13 

~ 
13

— 

~~l’~2’~” ‘~k~’

E = (e 11,e12 ,... 
~
e j n ... ekn ).

Note: In all of our special cases ,

k k , k  ~i 
n~

N = 
i=~1 ’’ ~ 

= ~~~~~~~~~~ ~~~~~~ ~ 
= (n~Y~ j~l 

13

We wil l need the MLE ’s in the following two cases. The first

case specifies that the set of mean vectors is in a lower (p-r)

dimensional space passing through the origin:

(1.3.3) ~~ = 0, y1.

The second case specifies that the set of mean vectors is in a

0

~



——-

~~~~~

-- .

~~ 

.

~~~~~~~~~ 

.-

~~~~~

) 

lower dimensional space which can pass through any point:

(1.3.4) B~ = a , y
~
.

For the first case , we will apply Theorem 1.1.3 with F as

defined by (1.3.1). Our result is:

Appl ication 1. When our model is

= ~ +e~~; i = 1,2 ,...,k; j = ~~~~~~~~
B = O ;

then the MLE of B, and ‘S are

=

k ‘~i= N~ ~ ~i=1 j=l
where 

k ~
W = 

i~l ~ 
~~~~~~~~~~~~~~

I = ~ (x . . ) ( x ~ .),
i=l j=1 13 3

and the columns of B are the eigenvectors corresponding to the

r smallest eigenvalues of W 1T .

For the second case we can apply Theorem 1.1.2 with a = (l ,l ,...1)

and F as defined by (1.3.1) to get:

Application 2. When our model is

= ~~~~ i = l,2 ,... ,k; i = ~~~~~~~~
B
~~~~

a;

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _
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) 

then the MLE of B, a , and S are

=

= ~1-WB (BWB ’) B(~~-~).

k ~i= N~ ~ ~i=l j=l ~ 3 1

where

k ~i
W = ~j =l j =1 ~~ 3

k ~i
I = 

~i=1 j= 1

and the columns of B’ are the eigenvectors corresponding to the r

smallest  e igenvalues  of W 1T.

The model in  Application 2 is the same model Rao [1973]

considers when he talks about a test for dimensionality . His test

of dimensionality is a test of the hypothesis that 
~~ 

= ci versus

the hypothesis 
~~ ~ 

a. His test statistic turns out to be similar

to the likelihood ratio test statistic although he neither mentions

nor proves this. He does find the likelihood ratio test when s is

known .

Villegas [1961] considers both Application 1 and 2 - the first

of which he calls a homogeneous linear functional relationship. All

of Villegas ’s results are only valid when we are talking about a

single functional relationship, i.e., B is a row vector. Through

geometrical arguments similar to the techniques used by Max Van Uven

[1930] who derived estimates of B and a when z is known , Villegas
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I

derived maximum l ikelihood estimators which agree with Anderson ’ s

and ours . B turns out to be the eigenvector associated with

the smallest eigenvalue of W~~T. Villegas also talks about cases

in which Theorem 1.1.4 applies ,i.e., when K 
~ 

He shows that

the covariance matrix has the form needed in Theorem 1.1.4 when

it arises from certain experimental designs (mainly incomplete

block designs.) Since our results are valid when B is any rank

(< p-i) , our results can be thought of as extensions of Vi l legas ’ s

results for a single functional relationship.

We can give another application which fits directly into a

one-way analysis of variance. Let our model be

=

0 where ~. i s the unknown grand mean. We will make the common
k

assumption that ~ ~~~ 0. We will be fitting parameters under
i=l

the hypothesis that ,

= 0.

It should be noted that B~ can not equal anything but zero when

z
~~

ni = 0. The MLE 9f u is

U =

If we subs t i t u t e  ~i into the likelihood we have exactly the same

maximization problem that is solved in Theo rem 1.1.3 except that

we wi l l  use

X~ = X-~(l ,l ,...,l) (x11-~, x l2
_ x

~
...

~
x k ~~~~~0 nk
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) 
instead of X. If we use X* and F as defined by (1.3 .1) in

Theorem l.l.3,we get the following application:

Application 3. When our model is

= i~+~~+e1,~; i = 1 ,2,...,k; j = l,2 ,...,n1;

B~1 0;

then the MLE’ s of U~ 
B, and : are

= i1-~ -

k “i -
S = N 1 

~ ~i=l j=1 ~ 13 ~I

where
k n1

W = 

~L j~1 ~~~~~~~~~~~~~~

k n
~T = ~i=l j=l ~ 13

and the columns of B’ are the r eigenvectors corresponding to the

r smallest eigenvalues of W 1T.

The model considered in Application 3 is a generalization of

the model given by Kristoff [1973]. Kristoff gives an ad hoc goodness

of fit test for his model whi ch is actually equivalent to likelihood

ratio test statistic.

In all applications so far , the estimate of B which was given

and which maximizes the likelihood was unique only up to multiplication

0 
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on the left by a nonsingular matrix. By picking a unique member

from the class of maximum likeli hood estimators as we did in our

section on the consistency of the estimators , we will show another

class of models can be handled wi th our method.

Consider the following model:

(1.3.5)  = v~+m~~; i = i,2 ,... ,k; j =

z~ = Hv
~ 

+

where y~ and z1~ are p-r and r dimensional vectors of observations

respectively, v
~ 

is a p-r dimensional parameter vector , H is a

unknown rxp-r parameter matr x , and ( 13~ is the error term . We willgli
be try ing to estimate v .~ and H. The most reasonable assumption

(according to Acton [1959] )abo ut the distr ibution of the errors

0 is that each (
~~

) have a joint normal distribution with mean 0

and unknown covariance rnatr iv ‘ . Errors arisin ç from d i fferen t

observat ions are independent of each other. We wi l l  now show tha~
our new mode l ( l .3 .5~ is j u~~ another appl icntion of the model in

Theorem 1.1.3.

If we let

y.. m.. v.
= ( 13

) = ( 1 J \ ~- 1
ij Z~~ ‘ ii g1~

’’ ~‘i Hv~ 
‘

our new model (1 .3 .5 )  can be rewritten as

= ~~~~~

We also have a side conditio ’ . that
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(H, I)~ . = 0, y. .
1 1

This formulation of (1.3.5) is very similar to Application 1 , the

only difference being that now we want the last columns of B to

form the identity matrix as we did in the section on the consistency

of the estimators . If we let

8* = (B~~B1,I) = ~
-l (~~~~) =

where B = (81,82) is the estimate of B from Application 1 , then B*

is the only matrix with th~ correct form which maximizes the

likelihood. B2 will be inve rtible with probability one;however

if it is close to being singu lar (one of its eigneva lues is very

srnall) ,our results will be mislea ding. It would indicate that there

is a strong internal relationship between the p-r variables composing

y~~. Since B* is tb- only matrix of the correct form wh i ch is a

maximum likelihood estimate , - c~
(2))l B(l) must be the maximum

likelihood estimate of H. From Applicat ion 1 we can also get the

MLE of and z. Since v~ is the top p-r rows of 
~~~
, we have the

MLE of v .~. If we summarize the preceding statements , we have:

Application 4: If our model is given by

y1,~ v
~
+m
~~

; I = 1 ,2,...,k; j = ~~~~~~~~

z~

where y1 ,~, v1, m~~, z~~, H and ~~ 
are defined in the paragraph

following (1.3.5), then the MLE of H , v .1 and are given by

0

- - .

-~
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D 

(B (2)y~~
(
~
) 

1V
1 

= .~1 -W B’(t3WB ’) ~~~~
k i y . . -v . y..-v .

= N~ ~ ~ (

V 1J~~~1 13 ~i

i=l j=l ~~~ V
.j 

Z
~~

- V .~

where - -
w = - -

1 1  3~ l 13 1 ~i3 1

n.k 1 x. . y.
T = ~ ( 1J ) ( 13 )~

i~l j=1 ii ij

and the columns of B ’ = (B~~~,B~
2
~)’ are the eigenvectors associated

with the r smallest eigenva ’ues of W 1T.

~emark: Application 4 i~ very similar to a model discussed by

Gleser and Watson [1973]. j O  Chapter 3~ we will be discussiwj

models which are generalizations of Gleser and ~itson ’s model .

We could make minor alterations on the model we just discuss ed.

For instance , we could estimate parar :et~ r~ in the foll ow i ng ~udel:

y~ = v 1+m~~
z. . = Hv .+cx+g.
13 1

where all the terms (except a)  are defined in the prr .vious a 1 l icat ion.

The maximum likelihood esti ma tes ca r b :. der iv f- ~ f ro m I~:p ’ ic ,~;Hn 2 in

a ma riner analagous to th~ w~y we derived tbe es~ ~r~~t r .  fe ’  ip~ l ic at ion

4 from App~ication 1 .

Simi larl y Appl icat ion could be e~ t endcc ~ to cov’-r t I c loll . m~ . jn q

model:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ — .. —
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yji =

where all the terms (except 
~~~~ 

and p
2

) are the same as in Application

..
~~~~~ 

_V. ‘V_~~.V_~~ __ . ~~~~~~~~~~~~~ ~__ — — — —- — ~~~~~~~ ~~~~~~~ ‘~~~~~~~~ —.- —.——-‘
~‘———.—~~~~ —-—~~ - -~~ .—‘~~~~~~~~~~~~ ———V— ‘~ .~ ~~~~~~~~~ 

-V
~~~
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CHAPTER 2

TESTING THE EXISTENCE OF UNKNOWN LINEAR RESTRICTIONS
• IN THE CLASSICAL MULTIVAR IT\TE LINEAR R[C~ESS I O~ MODEL

2.0 Introduction

Let our model be the same model we considered in Chapter 1:

(2.0.1) X =F +

where X is a pxN matrix of observations , is an unknown pxk(p<k-N )

parameter matrix , F is a kr o wn kxN ma trix of covariate s , and E is

a pxN matrix of errors . We assume that each column of E is

independent of any other column . We also assume th~t each column

of E has a normal distribution with mean vector 0 and u r kno ~n

covariance matrix S.  In this chapter we are co ncei ted ‘w ith testing

(2.0.2) H0: BE = cia aga inst  H 1 : B ~

w rere B is an unknown rxp matrix , a is an unknown rxs( s-r-p ) matrix , a

is a known sxk matrix. We wi l l  der i ve results wh en a is of full row

rank. For the case a is the zero matrix , i.e., when we test

Ba = 0 versus Rn ~ 0, we wi ll merely state our results since in this

case all results can be derived in a way analagous to th2 case when a

is of full row rank.

0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _
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In Section 2.1 we w i ll Hnd the likelihood ratio test statistic

of H0 versus H1, and men tion similarities to test statistics of

Rao [1965] and Krjstoff [1973]. Section 2.’ ~c ll contain a discussion

of the asymptotic distribution of the roots of ~:hi ch l ikelihoo d

ratio statistic is a functi or . ~r will be concerned with cases

when the number of parameters increases with the sample size. In

Secticn 2.3, we will use the results of the preceding section to

get the asymptotic distr ib ut i ons of the l ikelihood ratio test

statistic and therefore asymptotic tests of H,~, vs. H1 . Section 2.4

will contain a proof that nbc tests aes~ribed in Section 2.3. are

consistent.

2.1. Likelihood Ratio Test S tat i s t i c

0 In this section we will be f~ndin q the likelihood r~tjo test

of H0: Be = cia versus H1 : B: ~ cia when our mode l is

(2.1. 1 .) X = :F + E.

All variables are defined in the introduction of this chapter.

In Chapter 1 we derived the n:axirr urn likel~ hend estimators of

the parameters un der H0. ~f we substit ute those estimators into the

likelihood function (see (1 .1.24) and (].l.i9~), we have

(2.1 .2) max L (X,B ,e ,~ ,E) = (2~) ~~~
- 

~~e - - pN i w~ ~~~ . 

~~~~~ ~~H0

where

(2.1.3) W=X(I-F’ (FF’)*)x’,

(2.1. 4) T X(I-F’ a ’(aFF’a ’r~aF)~~,

-- —V. ~~~~ V -- ~~~~~~~~~~~~~~~ - - -  ——-~~~‘- - - .

- 

__T_ ~~~~~~
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‘ 

and \ . s the ith l argest eigen value of W 1T. We may use standard

mu lt~variate regrcesion procedures to get the maximum value of the

li kel i hood funct i on when H1 is t rue:

(2.1.5) max L(X ,B ,:,~ ,z) = (2 B) T h  PNe~~ 
PN i w i~~ N

H1

where W is defined above. If we combine (2.1.2) and (2.1.5) we

will be able to get the likelihood ratio test statistic of H0

versus -i -~. Our result is summar ized in the following theorem .

Theorem_2.1.1. If our model is given by (2.1.1) and we wish

to test the hypothesis H0: B~~La versus H1 : B~~cia (a has full row rank),

then the likelihood ratio test statistic -is

max L(X ,B ,:,~ ,’:)

- 

H0 -
—
V. 

- 

~~~~~~~~~~~~ p~~p-l~ 
~~~~~ 

~~p-r+l~ 
-

H1

where is the ith largest ei genva lue of W~~T and W and I are

defined by (2.1 .3) and (2.1.~) respectively.

Remark: When a is the zero matrix , the likelihood ratio test

statistic is identical to that given in Theorem 2.1 .1 except that

I is equal to XX ’ .

We also i~ave the follow ing corollary :

Coroll- iry 2 .1.1. Let our model be

x~~ = i..~ + e~~; I 1 ,2 k; j =

where x~~ is a p-d ine ns ional vector of obser~e~ values , c~ is the

0 mean o~ thi i t h  group cf O L me ?Y v d t lO f lS  and is a p—dimensional

- - — —
~~~~~~~~~~~~ -- .—- -  __

~~~
_
~~~ 1_iV~

__
~, 

- , ~~~~~~~~~
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error vector . We assume that the errors are independently distributed

with a norma l distribution having mean vector 0 and unknown covarianc e

matrix ~~. The likelihood ratio test statistic of the hypothesis

H0: ~~ 
= a versus H1 : B’. ~ ci ,where B is an unknown rx p ma trix and

a is an unknown rxs vector ,is

A p p-1~ ”~ 
A p~r+i

) N~

where \ .  is  the ith eiqenvalue of W~~T and
n.

i
~

l ~~~~~~~~~~~~~~~~

k
I 

~ 
(x
~

._
~
)(x. .-

~~
) ‘ ,

1=1 j=l ~ 13

k n~
~ x i., ~ = N 1 Y x .

0 k 

j=1 1=1 j-= l 13

N = ~ n 1.

Corollary 2.1.1 follows from Theorem 2.i .1 just as Applicat i on 2

followed from Theorem 1 . l V ?  in Chapter 1 .

The reason we men tion ed Corollary 2 V l l is that the- ny eothesi s

we are testing in that corollary is exactly the hypothes i s of

dimensiona lity in Rao [1 9731 . Rao der ives the li keliho od ratio test

statistic when S is known . He does not derive the likelihood ratio

test when is unknown however he does g ive an alternative test

which is also based on the smallest roots of W1T . He g ives an

asymptotic test based on his test statistic which is valid only

when k the number of group~ is fixed. If we use the model in 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - V.--



Corollary 2.1.1 we may believe that the number of groups should

increase when the sample size increases. The asysptotic test in

this case woul d not be the same as when k is fixed (sc-c Section 2.3).

Kristoff [1973] considered testing an unspecified li ri ecr

relat ion ship in severa l model s. In the basic mod .’l (his case 1),

we measure a pe rson ’ s scores on two tests. W° as~usio t i ; ’ ru is an

equivalent form of each te st av a ’ia ble. A nerear ; ’~. scares arc- equal

to that person ’ s ahil it~es (true cor es )  d u o  an error ‘ire . We

summarize this mod e l ~ t h the fol1-ew~~q r eu at i c n :

x 1~ ~+~1+e 1~~; ,k; j = 1 ,?; ~ = 2L;

where x 1~ is a 2—dimensio na l  vec t o r  ch o se d r - - ent~ a re the i th

person ’ s scores on the j th  ~u --i of the twe ~‘ste , is t h e  a~cra1e

3 

person ’ s true scores on th e tw~ :eutc (it is th r same far eith e r torte

of the two tests), 
~ 

is t o  differen os between t’-e i t ,  person ’ s

true scores end the avora co r5 n t ;  ‘ S t ree scores .  and .- is s i te rr5-nr

term . The error terms are all pair w se irdepend ent. ~-a:h hss a

norma l distribution w~th mean voctu~ & an d uik n u-~ri cO~ riat ;cc~

matrix 5 . We wish to test the hsp otnesis that a sin ql t e~pocified

linea r re~at i on exists aga i nst the h\po the- ;is that CO’ . e x i s t s , i.e . ,

we test

H0: B~ = 0, versus H1 : Bo / C , for some i .

where B is an unknown 2—di me ri~ i cna1 row vector.  We f e - nd the m ax imum

likelihood estimators of the param eters w er’ is true in :r p~m l ic a t i o r 3
k

of Cha pter 1 unde r the assumption that 
~ 

= 0. W e co id also get

0

V.—-- — --——

~

’--- -— — _ _ _ _ _



~ — ---~~~~~~~~~~ —~~~~-~~~~ _~~~~~~~~~~~~~~~ _~~~~~~~~~~~~~~~~~~~ •~~.. ~~~~~~~~~~ -~~~~~~~

r 45

the MLE ’s when H1 is true using the usual theory of multivariate

linear regression. F we put the — c le Ieth Pr we would ‘e t  the likeli-

hood ratio test s ta ti s ti c wh i ch turn s out to be a func t ion of the

smallest eigneva lue of W~~T; V and T are g iven in App lication 3.

The smallest eigenv alue of W ’T is the same sta t is tic Kr i s toff

recomm ends . If we were to increase our sample size in this

example , we would probably increase the number of people in our

sample and not the number of equival ent forms of each test , that is ,

we would assume that k i rcr’~ases as N does and that

u r n  ~j-~- = lim = 1/2.

This example , therefore , prc- ;ides us wi th a situation in which the

0 

num~er of parameters does aot Stay fixed as the sample size increases.

In case 2 of Kristoff , we have exactl y the same model as the

above with one minor change - the difference between the score on one

form of the two tests and th~ score on the other farm of the two

tests need not have expectat~on 0. Our model i s

X 1~ 
= ~.+o.+e..; i = l ,2,...,~ ; j 1, 2;

where X~~, ~~
, and e~; are defined as before and is the expected

true score on the jth form of tee twC tests.  A gain we w i l l test

H0: B~ = 0, 
~ 

versu~ H1 : C- -~.1 / 0, for some ~~, where B is an

unknown 2-dimensional vector . If we estimate first , we can find

the MLE’s of the parameters when the hypoth esis is true. (See

Application 3 of Chapter 1 for th~ type of argument needed.)

_ _  _ _ _ _ _  ~~~~~~~~~~~~~~~~~ _ V~~~~~~~~

’
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When the hypothesis is false , it is also easy to get the MLE ’s.

The likelihoo d ratio test statisti c is a function of the smallest

eigenvalue of ~(T , where

i~ l ~~~~~~~~~~~~~~~~~~~~~~~~~~~

T = 
~

(l/2)(x i:+x i:), ~~ 
k~ i~ l ~~~

x ...
1=1 j=l 13

The smallest eigenvalu e of W ’T is also the sta ti stic Kristoff

recommends .

0

2.2. Asympto tic Distribut ions of the Poets

In this sect ion , we find the asy mptotic distr ibution of the

roots needed in the li kel i hoo d rat i o tests unde r the null hypothes i s ,

H0: B: = aa. The roots in which ~ are interested are the smallest

roots of

(2.2.1) T-
~NW~ 

- 0,

where

(2.2.2) T =  X(IN~
F’ a ’(aFF’a ’y1 aF )X’ ,

(2.2.3) W = X(I N~
F’ (FF’Y 1 F)X’ .

Throughout this sect ion , cert ain v a r ia tl o s are subsc!- ip~nd with an

Q “N’ I nd icat ina that those ve r~ able err’ cer nected w~ th a sample of 

- --—- V. ~~~~~~~~~~~~~~~~~~~~~~~~
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size N. We will let X IN be the ith root of (2.2.1) when our sample

is of size N.

It is helpful to find the distribution of the smallest roots

of

= 0.

Note that if 
~jN 

is the i th largest root of the above expression ,

then + 1 = A IM . where is the ith largest root of (2.2.1).

All our theorems a re resul ts i n ter m s of 
~iN • We will assume that

a is of full row rank.

In this section , we discuss cases when the number of parameters

increases with the sample si:e . We already mentioned that the

models of Kristoff [1973] rrc-~ ide us with examples where it is

0 reasonable to assume that the number of parameters increases with

the samp le size. A measure of how fas t t he number of pa rame ters

increas es wi l l  be
ii

lim = 1-li : ~~
- = l—( 1_ t) = t.

There are three possible cases:

Case 1: k is fixed:

Case 2: t / 1;

Case 3: k goes to infinity as ~ does; t 1 .

We will always assume that r (the number of rows of B), p (the

number of rows of X) and s (the row rank of a) are fixed.

When k is fixed , the asymota t ’c d~ctr i but ion of the r sm allest

roots (from Anderson [195’h] an~ frrr Hsu [i9~l]) is  the following:

-— - ~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _
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Theorem 2.2.1. Let p~~ 
N_
~~N

; I = p-r+l ,...,p; where 
~iN is the

ith largest root of T _ W _ c tj W
~
= 0. Then the limiting distribution

‘~ ~ p-r+ i ,N~~p_r+2 ,N~
V
~ ‘~pN~ 

when k is fixed is

- L
2~~ 

r(k—s— P+r)(5)~(r) ~ p~ ,k_ s~
p_ fle 

j V ~~~ 
1

i~p-r+1
1
~ _____________

i=l 
r(~ (k-s-p +r- l - i ) ) r(~ (r+l- i) )

p p
Ii ~

i=p— r+l j=i+1 1 3

The above distribut i on is the same as the joint distribution

of p~ where p~ is the ith largest root of

— eIj = 0,

and J is defined by

k-s -p+r
~

‘

i=1 1 ‘I

where the u~ are inde pendently di str iho ted wi th a norma l distribution

with mean 0 and covariance matrix

Remark. Theorem 2.2.1 can also be used when a is the zero matrix by

letting s = 0.

We now derive the asymptotic distribution of the roots in

Case 2 and Case 3. The asymptotic distribution of the smallest

roots in these cases is markedly different than the di str i buti on of

the roots given in Theorem 2.2.1. Be1~ore we state and prove seve ral

theorems which qi ve the asymptotic d i st r ibution of the roots in

0 Cases 2 and 3 , we need to derive ~~CV ~~~
’ r t l  lo -ma s.

_ _ _ _  _ _



-‘II”

) 

Lemma 1. Let our model and h ypothesis be given by

X = :F + E ,

B:F = cia,

where X , ~~, F, E, B , c~, and a are define d in the intro duction

to this chapter. The roots of

IT_ W-~~W~ = 0,

where T ,W are given by (2.2.2) and (2.2.3), have the same

distribution as the roots of

(2.2.4) j (N-k~~
1 U*LI*’ + N

~
(N
~
k) C~~~(N~kyt Z+D1~ 

= 0,
where

1 E

C 
QP.r~

l ::: 
~~~~~~

C = - - 0* + Ihh b \ - ~~~ -
~ h ~‘H ~uh

I U~ p-r+r~

~~~~~~~~~~~~ I
~~~~~~~~~~~~~~ 0 .. 0

D
1 

=ç  

° W k 1 2N~~N-
~~ 

C 

),

0 0

~~~~~~~~~~ I ) ,  

-~~~~~~~~~~~ ‘- V . . ~~~~~~~~~~~~~~~~~~~~~~~ -.
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and is the ith largest eigenvalue of

N~ (:F(I-F’ a ’ (aPP: ’ )~~aF)F’ : )y
1 ,

and finally U*, V are pxk -s and pxN -k respect ively whose columns

have independent normal distributions with mean vector 0 and

covaria nce matr i x I~ .

Proof. For any invert ible pxp matrix 8 we know that

j o ( T - W ) o ’ -~ eW o ’ I  = T - W-
~~W I  = 0 ;

the roots are the same whether we observe X or CX. Since

we may pick 0 so that use ’ = I~ , we may assume , without loss of

generality , tha t the columns of X have p-variate normal distributions

with mean vectors equal to the respective columns of 8sF and with

cornon covariance matrix J

Next we will let V~ ,V2,V3 be column orthogonal matrices such

that

V 1 V~

V2 V~ 
= I- F ’ (FF ’~~~F ,

~3 v~ = P’ ( rF ) ’F~r a ’ (aFF’ a ’ )~~aF.

It is easy to see that such matr ices exist. Let

y = (Y 1,Y2,Y3) (xv 1, XV 2.xv 3) 
= x(V 1 , V 2,V 3),

where is pxs , V 2 i’s pxk —s ,  :nd V is px~ —k.  Since ( V 1 , V2 , V 3 )

is as orthogonal m:t ’ ix , eac h cc 1 unn o~ V has an indep~’ndent normal

distr~oution with covar iance matr ix

0

— ~~~~~~~--— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The roots for wh ich we are getting the asymptotic distribu tion

are functions of V 2 an d V 0. Since V 1 is independent of (Y 2,Y3), we may

eliminate it from our considera tions. The distribution of Y2, V 3 is

constant .exp - ~ [tr(Y2-0
[V 2)(Y2-oeFV 2)’ + (V 3- o : FV 3 ) (Y 3-o :FV 3 ) ’ J

constant . exo -~ ~~rtr Y~ Y~ - (Y 3-oeFV 3)~Y3-e :FV 3)’~ .

We want the d i ; t r f 5 -j t i o n  of the roots (~ ~~~~~~~~~~ ,~~ 
) of1 ~ ~ pN

T W
~~

t.
N

W i  =

We know that Y 2Y~ has a centra l W ishart  distribution and that Y 3V~
has a noncentra l W ishart  distribution.

We now let

(2.2.5) G = e:FV3.

0

We can write the noncen trality parameter in the distribution of

Y3Y3 in terms of ~G’

(2V 2.6) GG’ c F,3V ’ o ’ =c r(F (FF ’ F-r ’ a ’(aFF’ a ’Y1 aF)F’:’e ’ ,

= 0 r (I_ Ft a ’(a~ F a ty l aF)F’:’e I .

Let 
~ lN’~2N’~ 

,-
~~ ) be the ordered eigenva lues of N 1 GG’ . Under the

hypothesis that Be: = .
~~~~~ , the r smallest eigenvalues of N GG ’ w i ll

equal zero.

Next , we tr:nsfo~’r and ‘ in such a way that only a few

elemen ts of the resul ting mat r i are dependent on the non zero

eigenv a lues of N~~G G’ . Con si der

Q U 1 1 Y3.2, and V = P
1 
Y,,.

V. --~~~~~~~~~~~~~~~~~~ -- - - -—-  - -—~~~~— - - -~~~~~~~~ ‘-~~~~~~~~~ ~~~ ——
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where P and r are orthogonal m :tr ce ’s w h ich  e k e1 2

3 ... C) 0 ... 0

/0 ~~~~ ... O

= 0 0 ... ~~~~~~ ... -

\ 9  9 ... 0 0 ... 0 /

o a ...~~~~~~~~

S4 ~ce F 1 and are ~ot ortr :ocj nal ma ’r~ces . the distr ibut ion of

U and V is

1 p-r 
_____ 

p-r
(2.2.7) constant .exp- ~-(t - ( UU’ +v v ’ ) +  

~ ~~~ u
~~

+N )‘ ij~~~
)~~i=l 1=1

where ~~ is t~e i ,it,a e~eoent of U.

o We want the d is t r i reu t io : - of the =r- nts ~~

(2.2.0) ‘Ju’ - :  ~VV’ H 3~3~~~~2~2 
-0.

We shou ld su~nt ion that U is - p\ k-s a-nJ that V s p:’ N .-k .

Finall y, we w 11 ‘s ~ke s — i s - r d  - u~ st t~t ons wh ich wi 1 give us

our le r ’sflO V Let 
V

= U-F 1GP2 .

The jo int distr ibution of U* and V is

(2.2.9) constant~ex p [- ~ tr (U*U* + V V 1 ) ] ,

i .e., the co l umns cf U*, whic h is pxk — s , and the columns of V ,

which is pxN— k , are independ ent ly di str ibuted t-~ith cr’~ .riancr m atri x

T~ and s e e n  ~ecto r 0 . ~~~~ 
thernfoy-o hem~-c’

C)



~~UIFV — - - _~~_. ~. ~~~~~~ 
- 

. 

h1.hhhhhhhhhhhhu l hhhhhhhhhhhhuuhl, 1 11_

,

() (2.2.10) UU’ = U~U~ ’ + ‘~~~ C + N ( Dl+ s- N .I
P ).

where C and D 1 are g ive n in the statement of this lemma . Our final

substitution is

(2.2.11) z = (N-kY ~ (vV ’ -(N-k)

= (N-k)~~(’~
-
~~)-(N- ky~ I~ .

The l emma now fol lows th~-cc ah a subst i tut ion of (2.2.10) and (2.2.1 1)

into (2 .2 .8) .  Q .E.D.

Lemma_ 2: If P is a pxk matrix and each column of P has a norma l

distribution with mean C and covariance matr ix Ir~ then each

element of the matrix (k)~~(PP’ _ kI~ ) a;yrptoti- :ally has a nors.al

d istri bution wi th mean 0, v :ri.c:c-e 1 for J iagona l e lements and

0 variance 2 for off-diagor- -~ e~ements . A l l  elements are asymptoticall y

independent. We w i ll caM this asymptotic distribution the

p-dime nsional matri x r.cr-’c~1 dist r ibutio n .

Proof. Use Theorem 4.2 ~~ in ~nderson ‘sI CYI].

Remark. If we let (PP’)22 se s-as rxr rat ’;x which co”’orises the

lower right hand corner of 57 , then

k~~(( P P ’  ) 22~
kJ r )

has an r dimensional matrix norma l di st ric ut ion .

We now state severa l assumpt ions which we wil l ma ke when we

discuss the asympts -tic distribution of tbe roots- fo~- Cases 2 and 3 .

0

_ _  -~~~~~~~~~~..
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Assum ption l. The niatri - ? t 1 ( 0 ’  defined by (2.2.6) converges to a

f inite matrix R whi c rm has r .’ - ~k p-r .

~~ _umpti~~i.. ~j N = + o(~~). where is tee ith largest

eigenva lue of R and is the ith largest eigenva lue of N ’GG’ .

Assumption 3. The ncr zero roots of R have multiplicity one.

Assumption 3 is not necessary ; the proof given below wou ld

have to he al tere d to app l y ,.,h:n the non ma rc- roots of P do not

nave mult ipl ici ty one. Since the a l terat ions cn~y compl icate matters ,

and since they do not ai~-cct the distribution of the smallest roots ,

we wi l l  omi t them .

Part 1. Case ?: 1im ~~~!~ = t � 1.N

0 In the followin p theorem , -,-ie give the asymptotic distribution

of the roots when u r n  ~~~~~ t ~ 1.
N->~

Theorem 2 .2 .2. Assume that H~~ ~~~~~ V. = t < 1 and that Assumptions

1 , 2 and 3 hold. Let

(N-k)~ ( n~ r± -(ki’
~

-
~~~

)); i 1 ,2,.. .,r;

where is the ith lar ce st root ‘sf TW*I~~. The lim i t i ng distri bu-

t ion of ( Vp_ r+ ~~~~ ~p~r+2 N ~~~ is the same as the distribution ~

of the r roots from 
-~~

j(l /t-l)s-- Q 1~
(1/t

~
l)Q 2~

vI r~ 
= 0,

where and have the r-dirsc ns ional r .~trix norn:l distri h ution

0 (s -e r  Lemma 2).
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Proof. By Lemma 1, we only have to cons ider the distr ibution of the

r smallest roots i = p -r+l ,p-r+2 ,.. . ,p) of

(2.2.12) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
= 0,

where C , 7, and are defined in Lemma 1 , and the columns of U~, V

have in dependent norma 1 d istributions with mean -.‘ector 0 and

cova riance matrix I~ .

Consider the following matrix:

A = kTh (U*U*1~ kI~).

If we substitute A in to (2.2 .1 2), we get the following equa tion:

(2.2.13) I (k)~ (N
~

k) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

= 0.

By Lemma 2 , A anJ Z have p-dimensional matrix normal distribu-

0 tions. It is easy to see that C is asymptotical ly independent of

A and Z. The elements of C are functions of the first p columns of

U*. Since A is the same asymptotically if we delete the f irst p

columns of IJ~, C and A can be thought of as functions of different

variables asymptotically. The asymptotic distribution of C can be

obtained by using the de fin ition of C.

Consider the follow ing variable:

(k/N_k)+v p_r+i /v~
:
~.

We can substitute the above expression into ~2.2.l3) f~~r end

try to f ind out what V p..r+j must be d istributed as when N -
~ ~~~ . Our

result is

(2.2.14) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0 where

-~~~~~ -- -- -~~~~ — -~~~~~~~ - -— . - - —~~~ V.~~~~~~~



N V p r+i
N-k 

y
iN 0 ... C

I ~N - k N 
-v ~ c ~~~~ 

— -
, r . _ 

~~~~

D —
2 V

0 0V . . .

Let us write

A — 

A11 A12 — ~
‘l1 ~~2 

- 

- ~ll 
Z12

- 

~A21 A22~’ 
c — (

~ ~ ~ ~ 
~‘2l ~22

where A 11, 
~~l’ Z11 are all p-rxp-r; A 12, -

~
‘l2  and 

~12 are all

p—rxr , etc. We now discuss the upper left hand block of p-rxp-r

elements inside (2.2.14). When N is large , k~(N~k) A 11 , N2 (N_ky
1 
~~l

and (N_kY ’2Z
11 all are arbitra rily small. The only matrix which

remains is

/N~ 
‘
~
‘lN 0 ... 0 

\ 
fl/t 

~~l 
o . .. 0( ? ~~~~ 2N V 0 )

~ 
( 0 i/t Y2 0

\ N / \ 0 ...l/t y
N-k ~

‘p-r,N p-r

The elements in the last r rows and column s all go to 0 when N

gets large . If we multiply the last r rows and columns by (N-k)~ ,

we wil l  be able to find the terms that dominate. First of all ,
a.s.  a .s .

(N— k)4[k~(N-kY A12] 
-

~ O ,(N-k)4[(N) (N-kY 
~i2~ 

0 and
a.S .

(N-k)~ [(N—k)~~-Z12] -~~ 0.
a.s.

A l mos t su re convergence is ind icated by -
~~

0

V.- -- -~~~~ -

‘
- - - - - - ‘“-- - - - - - - ‘ - . - - V .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



o When we multiply the r rows and columns by (N-k)-~, we multiply the

lower right -hand corner by (N-k)’~. By Lemma 2 we know tha t

~~
—

~~
- A~2 

- (lIt-1)~- Q 1,

where indicates convergence in distribution and has a

r-dimensj onal matrix norma l dis tribution. Similarly

k 1
W1~ 

1.22 - I~ -~~’ 1 W 2,

where Q2 has a r-dimensional matrix normal distribution. All other

terms go to zero .

If we combine the above statements , we get that when N is large

(2.2.14) becomes

~

(

~l/t
-fl 

1 /t Y ? ::: 
)~~~

where

= ( l / t ~~ l )  C i t Q 2 p ~r+i Ir~

Therefore “p-r+i is a ru-at of = 0. The di stribution of

(V p r+l~ ~~~~~~~~~~~~~ . , ~i~~) is the distribution of the roots of

I (Vt-l)~ Ql~ 
t
~

i 2~
V I r~ 

0,

where Q1 and Q2 have r-dimer sional mat rix normal distr ibutions.

Consider

= + V
j~~
/~~~~~~~ ; i = p-r+l ,p-r+2 ,... ,p;

0
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where is picked so that we have equality in the above expression ,

i.e., “iN is defined by 
~iN :

= 

~~iN  - 
~~~~~~~~~ fiN (A ,Z,C).

We now show that the distribution of y
iN goes to the distribution

of

Our preceding discussio n shows that when

u r n  A 22 
= Q1, u r n  

~22 =

and A , Z and C all converge to finite matrices ,

u r n  y
iN = = f~(Q1~Q2).

We have mentioned the limiting distri butions of A , Z, C. The set

of discontinuities of

( (n (~~~\ f (f l  n
p-r+l ”'p-r+2’”~ ’~

’p~ ‘ p-r+l ”~l ”42’’”~ ’ p”l”
~
2

occur only when one or more ~ the roots 
~“p-r+1 ”~p—r+2’”~ ”'p~ 

are

equa l; the set of discontinuit ies has measure 0 since the probability

any of the roots are equal is zero. By applying Rubin ’s theorem

(see Anderson [l95lh]), we have that the asymptotic distribution of

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
vpri ) is the same as the distribution of

~~~~~~~~~~~~~~~~~~~~~~~ 
Q.E.D.

Using Theorem 2 in An derson [i95lb] and the above theorem ,

Theorem 2 .2.2 , we conclu de th~ foll owin g :

3 

-~~~~~~~~~ -V . - -~~~~~ -~~~
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Theorem 2.2.3. Assume that l i rn ~~~~~~~
- = t 1 and that Assumptions

1 , 2 and 3 hold . Let

~~r

~iN 
= (

~ iN _ k / N_ < )  i-s-——-- ; i = p-r+l ,p- r-4- 2 ,...,p ;

where is the largest root of TW~~-I0. The limiting distribution

of 
~ p-r+l,N’~p-r+2 ,N’ .. ~C~~~~ ) is

2~r/2[ n (4(r+l~ i))] e 1
~~~~~

1

i=l i p-r+l j=i+l ‘ ~

Part 2: Case 3: k -- as N —‘~ °‘ but lim ~j -~- = 1

The following theorem will contain the asymptotic distribution

of the roots when k goes to infinity as N does and lim(N-k)/N = 1.

0 Theorem 2.2.4. Assume tha t k as N ~~, that u r n  u and
N-~

that Assumptions 1 , 2 and 3 ii~id. Let

y iN = - ~~~~~~Nk ~~~ : ~ = p-r~l , p-r+2....,p ;

where -

~~~~~~ 

i s the i th lar ges t root of T W 1 _ I
p . Then the limiting

distr ibution o f (‘
~p +1~~’ D.r+2~~

”” 
~ pN~ ~

s the same as the

distribut i on of the r roots of

Q-v I~~ 0

whe re Q has an r-d iTa- ~ns io n i1  - a t r ~x n r c - -i eist~-~ c’t~on (see

Lemma 2).

Proof. Berause ~ ~~~~
- r o e~ c~ th j 5  ther~~ i a - .‘

~~ cv s~mi ‘ a’ - to tho

p rno~ o~ 
T e - -e r i- m 2 .2.? , we c~ 

1)  
~-al y ~i ’~’n an n t ’ ~rr ’  Cii he rr~of .

V. ~~~~~~~~~~~~~~~~~~~~~ --
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By Lemma 1, we only have to consider the distribution of the

r smallest roots i p-r +l , p-r+2 ,...,p) of

(2.2. 15) I(~
_ k) _ l

U*u* I+N~(w _ kY 1c_
~N (N_ k)~~z+Dl! = 0,

where C, 7 and are defined in Lemma 1 and the columns of

U* , V have independent norma l distribution with mean vector 0 and

covariance matrix I~ . -

Consider the following matrix:

A = k~~(U*U*’_ kI~).

Substituting A into (2.2. 15) yields

(2.2.16) v’k/ N-k A + Vff/N-k C_ q~ +D1 + ~~ I = 0.- p

0 We now consider the followin -g variable ,

k/N-k + vp_r+i /Nk~~•

Substituting the above into (2.2.16), we obtain

(2.2.17) ~$A + N C - 

~~~~~ Nk
: . D2 1 = 0,

where

/ N “p-r+i 0
/ 

N E 1 1N 
- 

Nk~~ 
0

_ 1 N “p-r+i 
oD2 - (  0 

~fl7 ’C 2N N k~~
\ a “p r+i

‘-p .. A rNk 2

If we multiply the last r rows and columns of the matr ix inside the

determinant of (2.2.17)  by N- k . 1 , and let N go to infinity , we get 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



V. -~---_

fY i 0 ... 0

10  Y 2 
... 0

I .  . . = 0 ,

where

= 

~v”p-r+i~
’r 

= ~im A ?2
_V

P...r+i

= lim A22,

and A22 is the lower rxr right-hand corner of A. Therefore ,

V
p r+i 

is a root of IQ I = 0. By Lemma 2, the distribution of

~“p-r+l ”p-r+2’~” ~
v~) is the distribution of the roots of

= 0

where Q has the r dimensional matrix norma l distribution.

All that we have to show is that the “p r f ~,~[~ 
which gives us

equality in

k~~~~p~~~~N‘~p-r+iN N-k Nk~~
goes in law to “p r+i • The demonstration of this fact for Case 3 —

is the same as for Case 2. We therefore have our theorem. Q.E.D.

If we use Theorem 2 in Anderson [1951b] and Theorem 2.2.5, we

can conclude the follow i ng :

Theorem 2.2.5. Assume that lini -
~~~~

-
~~

—— 1 , that k as N -
~ ~~, and

that Assum ptions 1 , 2 , 3 hold. Let

y iN = (
~lF~

-k/N
~
k)Nk

~~
; i = p-r+1 , p- r+2 .V..,p;

where is the ith largest root of TW 1 _ I
~ .

— -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _
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Then the limiting distribution of the set 
~“j N~ 

i = p-r+l ,...,p)

is 

2_r/2 [ ~ r(~ (r+l~ i ) ) ] e
j
~~~~~~~

N

1=1 i=p—r +1 j= i+l

Remark: Theorems 2.2.2 through 2.2.5 are valid when a is the zero

matrix.

2 .3 .  Asymptotic Tests of B: = cza Versus BE ~ aa 
‘

1

In this section we use the asymptotic distribution given in j
the previous section to get asymptotic tests based on the likelihood

ratio test statistic. I t  should be recalled from Theorem 2.1.1 that

the likelihood ratio test statistic is gi ven b~’

p 
~~N ~0 A = n ( l /x j N

)2  = a (l/l+~jN
)2

i=p-r+l i=p-r+l

where X jN is the ith largest eigenva lue of 1W 1 and is the ith

largest eigenvalue of TW~~-I~,.

First , let us consider the case when k is a fixed quantity :

Theorem 2.3.1. (Anderson [lg5la]) If our model is given by

(2.0.1) and we wish to test the hypothesis that H0: B: = aa versus

B: ~ aa, then the asymptotic null distri bution of

= —2 log it

is a x2 distribution with r(k-s-(p-r)) degrees of freedom . The

i-level asymptotic test of H0: BE = ~a versus H1 = B: ~ ~a would

be to rejec t the hypothesis H0 when

0
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0 ‘V~~~
2(1-a)
r(k-s—p+r)

where x~(B) is the ~th fractile of a x
2 distribution with d

degrees of freedom.

Remark: Theorem 2.3.1 holds when a is the zero matrix if we let

S = 0.

Let us assume we are actually in Case 2, i.e.,

lim (N-k)/N = t < 1 , and we (mistakenly) try to use the test given 
. -

in Theorem 2.3.1. We now examine what happens to ~‘ under H0 when N

is large . Note that
p

= -2 log A = -2 log a 1
~~~N~ 

N
i=p-r+l 1

= N
i=p-r+l

Using Theorem 2V2 .2 we can show that 1
~~iN goes almost surely to

l/t for i = p-r+l , p-r+2,...,p. W~ therefore know that

log(l+
~iN ) goes almost surely to r log(l/t). Since

i=p—r+ l
N r(log l/t) goes to positive infinity , we conclude that when H0 is

true, qi gets arbitrarily large in this case as N goes to infinity .

If we were to apply the test given in Theorem 2.3.1 for Case 2,

our probability of rejecting H0, even when it is true , approaches 1

as N approaches infinity. For Case 3 we have a similar result. We

su- ~arize the preceding statements in the fol l owing theorem:

Tb rem 2.3.2. If our model is gi ven by (2.0.1) and we wish to

test B: = aa versus B: / cia under the assumption that k goes toa
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infinity as N does , then ~‘ = -2 log A where A is the likelihood

ratio test statistic goes almost surely to positive infinity . The

test given in Theorem 2.3. 1 is meaningless in this case; when H0
holds , we would reject H0 almost surely in large samples .

Since v does not have an asymptotic chi square distribution in

either Case 2 or Case 3 , we have to derive separate asymptotic tests

for Case 2 and for Case 3.

Assume that we are in Case 2. For this case , we have the

following theorem : p

Theorem 2.3.3. If our model is given by (2.0.1) and we wish to

test the hypothesis H0: B: = aa versus H1 : B: ~ cia when

u r n  (N-k)/N = t < 1 then the asymptotic null distribution of

((N )(N_k))2 (2rk)~~ (~~~~~~A
2#’
~ — 1),

where A is the likelihood ratio test statistic , is a norma l

distribution with mean 0 and variance I. The asynptot ic test of

H0: B: = -xa versus H 1 : B- � cca woul d be to reject H0 when

~~~~~~~~~~~~~~~~~~~~~~~ >
l~~

and do not reject otherwise , where Z~ is the ~ fractile of a

standard normal distribution .

0 

--~~~~~-- ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~ — - -



Proof: Consider the fol1owi ~ j sequence of statements:

2/N p
A = JI (1/A .N ) = II

i=p-r+l 1 i~p-r+l

= n
i=p-r+l 1

p 
~~~~~ 1 1

= ii (
~~~

)(l/(l+ (N_k)
~
N ’
~
.N)),i=p-r+ l 1

N-k ~
— -l= I’ ( N~

) ( l _ ( N _ k ) 2 N  “ N + 0(N)),
i=p- r+l 1

= (N-k)r(l (N k)~.N
V.l 

~ 
y iN + 0(N)).i=p-r+l

The above equality can be wr tten:

= - 

i=p-r+ 1 
+ 0(N~).

The asymptotic di str ihut~~ - of ‘
~iN 

can be easily obtained
i=p_ r+l r

from Theorem 2.2.2. The iimi t i ng distribution of ~ is the
i=p-r+ 1

distribution of

= - t r ( (~ -1) Q. -(~ -l )~2) .
i=p-r-1- l -

The diagonal elements of Q 1 nnd Q2 are all independent , each with a

normal distri bution with mean 0 and variance 2. Since the trace of a
r

matrix is the sum of the di agonal elements , we know that 
~1 1 i=p-r+ 1

is normally distributed with mean 0 and varian ce 2r(-t-) (
~

- - 1).  We

therefore conclude that

i 0

-- ~~~~~~~~
V.- -  -V . - - - -
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3 
[(N_k)/(2rNk)

~
3
i~ p r+l

viN

has an asymptotic norma l distribution with mean 0 and variance 1.

Finally we may state that

(N(N-k) )~ (2rk~~ ( ( N )rA 2/N l)

has an asymptotic normal distribution with mean 0 and variance 1.

Q .E.D.

We now talk about the case where k -
~ as N -

~ ~~, but

lim (N-k)/N = 1 . In this case we have the following theorem :

Theorem 2.3.4. If our model is given by (2.0.1) and we wish to test

the hypothesis H0 : BE = ~a versus H1: B: � cia when l i m (N—k) /N = t =

0 and k -
~ as N -

~ =, then the asymptotic null distribution of

N( 2rk) ((~~~)nt2 i
~ i)

is a normal dist rihu t- fon w i th mear 0 and variance 1 . The

asymptotic test of H0: B 
= ~a versus H 1 : E- ~ aa would be to

reject H0 when

N(2rk) (( N / N-k )~ t 2”
~ - I)  >

and do not reject otherwis e , where Z 1 is the ~ fractile of a

standard na’-r:l distribution.

0

IlL

80



-

~~~~~~~~~~ 

- 

~~~ -~~~V.

67

Proof: Consider the followi ng sequence of equations :

2/N P p
A = IL (i

~
’A iN ) LI

i= p-r+1 i=p-r+l 1

F p
= n (l/(1+ (k/N_k)+v .N /Nki ))

i~’p-r+l 
1

N k
= H (_~j~_)(l/ (1+ (N_k)k2N

_
~v .~ )

i=p-r+l 1

N—k ~ ~ 1 ) 1
= H (l k2N ’v .N + 0(N’k ’))

i’~p—r+l 
1

= (N-k)r(1 ~~-l 
~ “ N j + 0(N 2k~~)i=p—r + 1 1

The above equality ma - be written

= 
i~p-r~l

”
~~ 

+ o (Nk~~ ).

The asymptotic null ~ist rihut ion of “IN can be obtainedi=p-r-4- l p
using Theorem 2.2.4. The li:i t in c~ di-a ti-ibu tion of ) is the

i=p_r+l
distribution of the trace n-f Q which has a norma l distribution with

mean 0 and variance 2r. The theorem now . fo l lows . Q.E.D.

Remark: When a is the zero matrix , Theorems 2.2.2 - 2.2.4 are all

still valid.

U

-‘ 
—V.— ~~ 

— ~4 ~~~pld$ujII[ur~~—I1 —V. V. 
—
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2.4 . Cons i stency of the Tes ts

In this section , we discuss the consisten cy of the tests

from the preceding section , i.e., we show that the power of the

testsgoes ~o one as the sample size increases when a fixed

alternative is assumed to be true. We will use the following

theorem to show the consistenc y of the tests.

Theorem 2.4.1. Assume that an ci-level asymptotic test rejects

when a test statistic is greater than a constant and does not

reject otherwise. If the test statistic goes to infinity almost

surely as N does for a fixed alternative , the test is consistent.

Proof. This theorem fol lows from the definition of a consistent

test. Q.E.D.

In the next theorem , we discuss the consistency of the test

given in Theorem 2.3.1.

Theorem_2.4.2. If N
~~

F(i N
_fla’(aFF’a ’Y 1aF)F ’ goes to a finite

matrix of fu l l rank , the test given in Theo rem 2.3.1 is consistent

Proof. For our fixed alternative , let us consider = :
~~
, where

is a matrix whose row rank is greater than p-r. Since we assumed

that N
~~

F(I N
_ F ’ a

~
(aFF ’a )

~~
aF)F ’ goes to a finite matrix of full

rank , the r- atrix

N 1:
0F(I-r ’ a

’ (aFF’ a ’ ) 1 aF) F ’ :6
goes to a :atrix of rank greater than p-r. We can show (see

0

14.
11

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
- -• - - - _ _ _ _ _ _ _
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) 

the proof of Theorem 1.2. 1) that W~~T converg es almost surely to

and that the rth smallest eigenval ue of W 1T goes

almost surely to the rth sniaHest eigenvalue of

In this case , t = 1. Since R0 is of rank greater than p-r , the

rth smallest eigenvalue of W 1T goes almost surely to a number

greater than 0. We therefore have that

A p A p_ l • 
~ p-r+l

goes almost surely to a numbe r greater than one . We can now

state that

-2 lo~ A = -2 ~~~~~~~~~~ . X p + ~)~~ 
N

goes almost surely to pos it. i infinity . The theorem follows

through an application of ~v- amn -u 2.4.1. Q.E.D.

For Case 2 and Cace 3, ~
-
~~; have to chan ge what our fixed alterna-

tive is. In these cases , tha number of parameters is assumed to

increase wi th the sample s ize .  It is fa ir l y evident that the

fixed alternative we picke ~i ~,- he -~ k is f ixed makes no sense for

Case 2 or Case 3.

We now describe what our ~~xed alternative w i ll be. For each

N , let us pick a E
ON SO that the rth a-n allest eigenvaiue of

(2.4.1) N : :
ON F(I~ F a ( a ~

F P a I)
~~ aF )F 1

~~ N

is fixed at > 0. We are fix ing the rth smallest eigenvalue of

the noncentra l ity parameter of T. Let us also pick = EON so that

o the matrix given by (2.4.1) converges to a finite matrix.

~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ -
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) 

We now consider the following theorem which is concerned

with the asymptotic test for Case 2.

Theorem 2V 4.3. The asymptotic test given in Theorem 2.3.3

(Case 2) is consistent.

Proof. We can show (see the proof of Theorem 1.2.1) that W~
1T

converges almost sure ly to l/t(l~+ �~~R) and that the rth

smallest eigenvalue of W1T goes alrno s~ surely to the rth smallest

eigenvalue of l/t(I~÷~~ R). For our rixed alternative (see

paragraph preceding this theorem), R = R0 and the rth smallest

elgenva lue of l/ t ( I~+~:~~R0) is greater than l/t. We know that

= \
p~~p~]~~ ~~ p-r+l

3 
goes almost surely to a qu ar-~ity greater than ((N-k)/N)~

’.

Therefore , since (~(~-k)/k)~ goes to in finity 35 N does ,

(N(N-k)/(?rk))~ ((~~~)~~
2m

~l)

goes almost surely to positive in finity . The theorem follows

after we apply Theorem 2.4.1. - Q.E.D.

For Case 3, we have a similar result:

Theorem 2.4.4. The asymptotic test given in Theorem 2.3.5 (Case 3)

is consistent.

Proof. We omi t the proof since it is almost identical to the proof

of Theorem 2 .4 .3 .

0

- -
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D

CHAPTER 3

ESTIMATION OF UNKNOWN LINEAR RESTRICTIONS ON
THE PARAMETERS OF A GENERAL LINEAR MODEL

3.0 Introduction

In this chapter , we d i s c u s s  a very genera l 1inear model called

the Potthoff-Roy model . This model can be formulated in the following

matrix equation :

(3.0.1) X = F1 F2 + E ,

0 where X is a cxN matrix o~ observed values , F1 is a known cxp

(c > p) matr ix , is an unknown pxm matr ix , F2 is a known mxN (N>m)

matrix , and E is a cxN natrix of errors . The columns of E are indepen-

dent with the same norma i distribution having mean vector 0 and covari-

ance matrix Z . We require th at F1 and F2 are of full column rank and

full row rank respectively.

The classical multivariate linear regression model Cdfl be seen

to be a special case of the Potthoff-Roy model by letting F1 
—

If we let F2 
= (1 ,1 ,.. .,l) then the Potthoff—Roy model reduces to a

simp le “growth curves ” model (Gleser and 01km [1954]). Estimation

of the parameters in the Potthoff-Roy model under various hypotheses

has been discussed by Potthoff-Roy [1964], Rao [1965], and Gleser

and 01km [1969].

11’
- V . ----. —~~~~~ . 
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We want to find the ~
-
~~

- L of :, and of two other matrices U1
and a which satisfy

(3.0.2) U1 F~ =

where U1 is an unknown rxp (r < p) matrix , F3 is a known rnxk (m > k)

matrix , a is a unknown rxs(s<r) matr ix , and b is a known sxk matrix.

Throughout this chapter , we assume that

(3.0.3) =

where ~
2 j 5 an unknown constant.

In Section 3.1 , we reduce our model (3.0.1) and hypothesis

(3.0.2) to a canonical for-n . Section 3.2 contains a derivation

of the MLE ’s for the reduced model , and also gives the fILE’s for

o 
the genera l model . Section 3.3 discus ses several special cases

of our reduced model . In Section 3.4, we consider cons is tency  of

the estimators in our models.

3.1. Reduction of the Mr~dp1 to a Canon i cal Form

Consider the following r~odel and hypothesis:

(3.1.1) X = F1 F 2 +

(3.1.2) U1 F3

where X1 F1,E ,F2,E,U1,F3,a, and b are defined in the introduction

to this chapter. In this section , we reduce (3. 1. 1) and (3.1.2)

to a simpler , or canonical form .

0
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3 Let us discuss the following transformation:

V 1 (F~F )
~ F’

(3.1.3) V = 

~ 
) 

~ 

1 ] x ,
V2 1

where V1 is a cxc-p column orthogonal matrix which satisfies

V~F1 0. Whenever we write the square root (or negative square

root) of a matrix , we mean the unique , symmetric , positive definite

square root. The columns of V are independently distributed with a

normal distribution havin g covariance matrix

The mean of Y is

(F~F1 )~~ F~ (F~F1)~~: F2E(V ) = E[( ) X] = ( 
~ 

).

Let
x* x* V

x~ (4 3) = ~~~~~~~~~~~~~~~~ 
-

where V2 is a N-mx~ col~ r’r orthogona l matrix which sat isf ies

V2F~ 
= 0. By Theorem 3.3.1 c~ Anderson [1958] , the co lumns of X*

will have ind ependc -nt r~o~’m-~i d~str ibut ions with covariance matrix

~
2.i The mean of X* is

(F ~~F
1

)2 c(F FII2 0
(3.1.4) E(x*) E(~~)( r 2 (F 2F~) - ,v 2 ) ( 

~).

If we l t

(3.1.5) = (r~FJ~ :(F2r~)

our hyrot - ; l c  ~ .2) in t~- ~
- ‘-- - . of * becom es: 

- -  ~~~~~~~~~~~~~~~~~~~ - - --~~~~~ — --~~~~~~~~~~~~~~~~~~~~~~~ - - -
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(3.1.6) U1 (F~F1 Y2 *(F2F~Y~ F3 
= ab. -

We will now make several substitutions which will ma ke our hypothesis

(3.1.6) simpler.

Let

(3.1.7) U2 
= u1 (F~F1r~,

F4 
= (F2F~Y’- F3(F~(F2F~)~~F3Y2,

d = b(F~(F2F~~~ F3
Y2.

With these substitutions our hypothesis becomes :

(3.1.8) U2 ~*F = ad ,

where F4 is a known colum n orthogonal matrix.

We now write the joint distribution of X*, X~ , X~ and X* :

O 2 Np
(3.1.9) f(X~,X~,X~,X~)(2m: ) exp(-2c~ [tr(Xt_ :*) (X ~

_ :*)l +

tr X~X~’+tr X~X~’+tr X~X~’]).

From a quick examination of (3.1.9), we conclude that we could get

the fILE (&2) of a2 if we knew the MLE (E*)  of E* , Our result would be

(3.1.10) ~2 = ~~~~~~~~~~~~~~~~~~~ X~X~~+tr X~X~ ’+tr X~X~ ’].

From (3.1 .9), we also know that is a sufficient statistic

for ~~~ U2 and a when ~2 is treated as a fixed quantit y . It is clear

that finding the estimators of U2, a , and ~~~, which satisfy (3.1 .8)

and which maximize (3.1.9) is equivalent to finding the estimators

of U2, a, :* which satisfy (3.1.8) and which minimize

0
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tr(X~ - :*) ( X 1 
-

Therefore , we need only consider functions of X~ when we find fILE’s

of U2, a, and E* . -

We have reduced our estimation problem to the following problem.

Let our model be

(3.1.11) X~ = :~ +

where X~ is a pxm matrix of observed values , ~~
k is an unknown pxm (p<m)

matrix , and E* is a pxm error matrix. Each column of E* is distributed

as an independent p—dimensional norma l distri bution with mean vector 0

and covariance matrix ci2. 
~~ 

where ~
2 is unknown . We want the fILE’s

of :~~, and of two other matrices U2 and a which satisfy 
H

(3.1.12) U *F = ad ,2 4

where U2 is an unknown rxp matrix , F4 is a known mxk column orthogonal 
I 

-

matrix , a is a unknown rx~- mat rix and d is a known sxk matrix. We

refer to (3.1.11) and (3.1.12) as e ither the reduced model or the model

in canonical form. Note that s<r<p<k and k-s~p.

In the next sect i on , we will fin d the MLE ’s of the parameters in

the reduced model. We will also use the MLE ’s of :~~, cx , and U2 in

the reduced model to get the ~L[’s of :, a , and U1 in the general

model (3.1 .1) and (3.1.2). Tt should be noted that the MLE of

for the reduce d ~-odel is n~t thr MLE or ~ for the genera l modeL

Equation (3.1 .10) çives j c , t he ~LE of 2 for the genera l mode l .
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3.2. Maximum Likelihood Estimators for the Model in Canonical Form

In this section , we will get the MLE for the parameters of the

reduced model described at the end of Section 3.1. We will also give

the fILE for the parameters of the genera l model (3.1.1), (3.1.2).

Let our model be the model described at the end of Section 3.1.

As in Chapter 1 , it is clear that if we find one set of fILE’s (U 2,a)

of U2,a then AU2,Acx is also a set of MLE’ s of U2,cx where A is any

invertible matrix. Because of this , we will require that U2 be row

orthogonal.

The method of finding the MLE’s of U2, :~~, and a will be similar

to what we did in Chapter 1. We will 1) fix U2,a
2; 2) find the

tiLE’s of E* and a as functions of the fixed values of U2,o
2;

3) substitute this estimate of :~ back into the likelihood; and :
0 4) find the maximum likelihood estimator of U2,a

2.

Part_1. U2,~~ fixed or given

We will now transform X~ into a form in which the estimators

of :* and a are easy to see. Let

P U
(3.2.1) P = (1) = ( v

2 )X
~
,

2 4

where V4 is a p-rxp row orthogonal matr 4x which satisfies V4U~ 
= 0.

Each col umn of P has an independent p-dim ensional normal distribution

with covariance matrix ~
2 .i . The mean of P is

U U U ~*

(3.2.2) E(P) = E( 2) (X *) (2) E(X *) = (v
2 

-* ) .V4 1 4

~

--

~

--- -- --- --—-- V. 
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Q Let

R
(3.2.3) R = ( 3) = P(F4 V ),

— 

P1~ F4 
p
1
.~,i

- 
p •F P •V2 4  2 5

where V5 is a mxm-k column orthogonal matrix that makes (F4,V5)

an orthogonal matrix. By Theorem 3.3.1 in Anderson [1958], the

columns of R have independent p-dimensional normal distributions with

covariance matrix ~
2.i.  The mean of R is

R R U z*F U E~~V a d  U E~~~V
- 

0 0 
— 

V =* ~ ‘~ =* ~~ 
— 

~ =* F ~J z* V
3 4  4 -  4 4 _  5 4- 4 4 5

From the above expression it is easy to get the fILE ’s. Since all

elements of R are distributed independently, we have that the MLE of
0 V4 ~ F~ is R3, of U2 * v 5 is R2, and of V4 =* is R4. We can

apply a standard theorem in muit ivariate regression to get the fILE

of a:

(3.2.5) cx R1d’ (dd’~~
1 .

We now can get the fILE of a*:

U2 R1 d’ (dd’~~
1 d R2 -l

(3.2.6) :* = 

~ ~~~~ R (F~,v 5 )
4 3 4

= (U~ ,v~) 
~R1 d’ (dd’Y

1 d 2) ( 4)

If we go backwards , using first (3.2.3) and then (3.2.1), we

get

0

- -  - V. ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-- . -
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= u~u2x*F4d’(dd’ )~~d F~
I
~v~v4xirF4F~ 

+ u~U 2X~V
5v~ 

+ V
~
v4xi~i/sv~.

Using the facts that - 
V4V 4 = U~U2 and ‘k - = F4F~, we get

= Xt-U~
U2X~

F4(I k-d’ (dd’)~~
d)F

~
,

& = U2X~F4d’(dd’)~~.

It should be noted that neither m’ nor & is a function of

We summarize our results so far.

Theorem 3.2.1. If our model is = ~ + E* where each column of

E is distributed independently with a p-dimensional normal

distribution ha’iing mean vector 0 and covariance matrix ~~~~

(~2 is a fixed a-~-~~tit y), then the fILE ’ s of ~~* and a which satisfy

the hypothesis U
2 

~~~ F4 
= ad , where U2 is a fixed rxp row orthogonal

matrix , F4 is a known m-xk column orthogonal matrix and d is a

known sxk matrix ar-

(3.2.7) T* = ~~~~~~~~~~~~~~~~~~~~~~

(3.2.8) ~ U2X~F4d’(dd’)~~. .

Part 2. Subst i tut ion of our derived MLE s back into :he i~~ elihood

an d naxi m~zation with respect to lJ7,s .

In this part , we f i nd the N~LE’ s of 1
~2 -and -

~~~ u s i n g  a~~, a as

defined by (3.2.7) and (3.2.8~. ~e now write the distribution of

after substituting ~ for ~~~~~.

(if)

- —~~~~~~~-~~~~ -~~~~~~~~~~~~~~~ - - - -~~~~— ---
~~~~
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) 

(3.2.9) f(X~,: *,o2,U2) (2~a~Y~ 
mPexp(_2o2)tr(x~~ *)(xt..~*)~

If we want to maximize (3.2.9), all we have to do is minimi ze

Q tr(X *)(X~~~*)t ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(3.2.10) = tr(U2X~
F4(I k_d ’(dd ’)~~d)F~xt’U~).

Minimizing Qsubject to the condition that U3 is row orthogonal

(i.e., ~~~ = It.) is a straight forward application of the Courant-

Fischer Mm -Max Theorem (se e Bellman [1970]). If we let the columns

of U~ be the eigenvectors associated wi th the r smallest eigenva lues

(3.2.11) M = X
~
F4(I k-d ’(dd’Y

1d) F
~Xt’

,

0 then tJ2 minimizes Q and therefore is the MLE of U2. The minimum

value of Q is A
1 

where A ,~ is the ith largest eigenvalue of M.
i=p—r+1

At th is po int we should talk about zero eigenva l ues of fI. Since

the rank of Ik V.d ’ (dd’Yd is k-s , M will have full rank with

probability one if and aol, if k—s > p ,  i.e., M will have zero

eige nval ues ~vi th pro~~b i i i t y  one if and only if k— s < p. In all

cases in the succeeding sections , we assume that k-s > p.

The MLE of ~
2 is easy to get since we know the minimum value

of Q. The fILE (~2) of ~
2 i n our reduced model i s

~2 1 ~ A.
i=p-r+l

where is the i~h largest elgenva lue of M.

a

V . -  ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~-~~~~~~~~~~~~ - —-  - - -- --- ~~~~ --  - -~~~~~~~~~
- -
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Let us summarize our results in the following theorem :

Theorem 3.2.2. The MLE ’ s of U2, ~~~, ~~~, and a
2 in the reduced

model (3. l . l l) , (3. 1 . 12) are :

a = U2X~F4d’ (dd’Y
” ,

= ~~~~~~~~~~~~ (dd’ )~~d)F~,

2 l~~= (
~~

-) 2.
~ i=p-.- r+l

where A .~ is the ith lam est e lgenval ne of M , the rows of U2 are

the eigenvectors associated with the r smallest eigenvalues of M ,

and 
-

M = X
~

F4 ( I k -d (dd ’ )
~~~

)F
~

X
~

0 
Remark 1. If we multiply U2 -and -

~ on the ~~ r ’~ ~r ,v  i nv e r t i b le

matrix , the resulting ~~tr~ces would als2 be ~~~~

Remark I I .  All ma trice s ~~ich ~re ‘1~~~~5 0r are or t he  : i -m

HU 2 ,  Ha for some inv err~b 1p ~‘-jx H .

Theorem 3 .2.2 gives ~s t e  MLE s of the par ametcrs in our

reduced mode ’) . If we u~ - th e MLE ’ s of * , U2 and a given in

Theorem 3.2.2 for our red-~~’--- ~ model. an d  a1~ -a use ( 3 1 . 3 ) ,  ( 3 . 1 .4 ) ,

(3.1.5), and (3.’ .7), Wi ca-n net thr -~J’s of _ ,  U1, and a in the

general model

Recall that the !~L f~~ a’ in the ~~-n ral do ~ is ni~~- n  by

(3.1 .10):

/
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= N~[tr(X~
_ *)(Xcr _ *) +tr X~X~~+tr X~X~ ’+tr X~X~’].

Follow ing (3.2.11), we found that the m inimum value of
V. V. P

tr(X~
_ *)(X~

_ r*)1 is 
~ 

a
~~
, where A~ i s the i th largest

i = p - r~ 1e i ge nv a l u e  of M which is defined in Theorem 3.2.2. If we use the

definitions of ~~~~ and X~ , we get

t r  X~X~’+tr X~X~ ’ +tr ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Combining the preceding arguments , we fi n a l l y  have

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where is the ith largest eigenv alue of M.

We now give the MLE ’s of U1 , E , cx , and ~
2 for the genera’)

0 model in the following theorem.

Theorem_3.2.3. The TM-LE s of U2, cx , ~~~~~, and ~
2 in the general

model (3.1.1) (3.1.2) are :

Ii
’) 

=

= U2X~F4d’(dd’)~~, 
.

= (F~F1 )~~ z*(F 2F~)~’~ ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
)‘F~xF~(F2r~~

’)F2x ’))

whe re A
i 

is the ~th largest eiqenva lue of M , the rows of U2 are

the eigenvectors associated wi th the r sm el lest eigenvalues of M ,

and
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- -

~~~~~~~~~~~

M = X
~
F4(Ik_d ’ (dd’) d)F

~
X
~

= (F.j F1Y2 F~XF~ (F 2F~ )’~~,

F4 
= (F2F~Y~ F3(F~ (F2F~Y~

’)F3Y~~,

d = b(F~(F2F~y
1 F3Y~,

= 

~~~~~~~~~~~~~~~~~~~~~~~~

Remark I. If we multipl y U1 and & on the left by any invertible

m a t r i x , the resulting matrices are also MLE’ s.

Remark II . All fILE’s of U1 and a are of the form AU 1, Acz where A

is some invertible matrix. -

Remark III . The rows of U1 are themselves eigenvectors corresponding

o to the r smallest eigenva lues of

(F~F1 Y~ M(F~F1 )~ .

3.3. Special Cases

The models we consider in this section are all special cases

of our reduced model . It should be noted that our reduced model can

be considered as a special case of our general model if we take

F1 I~ , F2 
= 1

m ’ and F3 to be a column orthogonal ma trix.

Consider the following situation:

(3.3.1) x.~ = ~1+e1 ; 
=

where x~ is a p-dimensional vector of observations , 
~ 

i s an

1)

_ _ _ _ _ _
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o unknown p-dimensional mean vector , and e~ is a p-dimensional

error vector. Each e
~ 

is distri buted independently with a normal

distribu tion having mean vector 0 and covariance matrix o2.I~
(a

2 is unknown). We want to estimate unJer the hypothesis that

(3.3.2) U2~ = cx ;  i

where cx , U2 are unknown rxl and rxp matrices respectively. If we

let

— ( \ ~ * (t ~ c r ‘1

1 — 
~~A 1 ,A2,. . ‘“m ’ ‘ — t

~l ‘~‘2’~ 
. 

‘

= (e1,e2,... ,em ),

then (3.3.1) and (3.3.2) can be written

= ::* + E*1~~~

0 

U2 5*F4 = c x d ,

where F4 = and d = (l ,1 ,...,l). In this form our model looks

identical to the model in Theorem 3.2.2. Using Theorem 3.2.2, we

get the following application.

Application 1. Assume our mod el is x.~ = ~~
+e1 and we want to

estimate U2, 
~~~
, and a subject to U~~~ = a , where x .~., ~~~

, e~ , U2,

and a are defined above. Then the MLE ’s of U2, cx , 
~~~
, and r2 are :

= Xf
..U
2U2(Xi

_X) ,

V.2 1 ~a A.
i= p-r+l

0

L ~~~~~~~~~~~~~~~~~~~~~~~



- - 
- -

~~~~~~~~

84

where A
1 

is the ith largest eigenva lue of

=

the rows of U2 are elgenvectors corresponding to the r smallest

eigenvalues of M , and

= 

i~ 1 
x 1/m.

Remark I. A)J~ and A& where A is an invertible matrix are also

MLE’ s of U2 and a.

In all the theorems and applications discussed so far, we have

remarked that the estimator of the unknown linear restrictions

(U 1 or U2) is not unique. In fact any invertible matrix times U1
or U2 would also be a fILE. In the app 1i c -~tiori we now discuss , we

0 require that the last r co lumns of our maximum likelihood estimator

of’ U2 are the identity matr ix (see the beginning of Section 1.2 and

also the discussion prece din g Application 4 in Section 1.3).

We wil l now consider th~ fol lowing mode l :

(3.3.3) 
~
‘i = v~+f1 ; i 1 ,2,...,m; -

z1 
= Hv~~+ct+g

1 ; ~ = 1 ,2,...,m;

where y~ and z.~ are p-r and r dimensiona l vectors of observed

values , v .~ is an unknown p-rxl vector , H is an unknown rxp-r

parameter matrix , and ~~ g
~ 

are p-r and r dimensional error

vectors which are distr ib uted independently of one another with a

norma l distribution having mean vector 0 ~nd covar i ance mat rix

n 2
~

Ip~r 
an d 02.1 respectively.
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3 

We wi l l  now rewrite the above model in such a way that it

can be easily seen to be a spec ial case of Theorem 3.2 .2. Let

y1, y e ) , . . . ,  

~m 
v, , vi,,..., v) ~ * — ( ‘  ~- to

1 Z1~ Z2~
..., Zm 

‘ -- - Bv 1
+a, 6v 2

+ x ,...,Bvm+a

f.I , f , .. .  , f
E * = ( ’ 2 m)‘g1, 

~2’”~ ’ 9m

then (3.3.3) can be formulated in the following way :

X~

(—H ,I) ~* = cz (1,l 1).

It is clear that the above model and hypothesis is exactly the

same as in Application l~ w i th the exce p t ion that U2 mus t have the

identity as its last r colurns. If Li2 = (U 12,U 22) - is rxr -

0 is the estimate oF U2 in A pp 1ic ~t ion 1 , then we can get the MLE

of H from the fol lowing expression:

(-H,i) 92U2p I) U22 21~U22) =

Since (-H ,I) is an invertible matrix times U2, it is also a MLE

of U2. It is clear that when we substitut~ (-H ,I) into (3.2.10)

for U2, that Q is minimized. Since (-H ,I) has the right form

H = 
~~22 u21.

We summarize our results in the following applicat i on:

0

V. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~~--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V.
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3 
~pp~jcation 2. Assume that our model is

I = 1 ,2,... ,m;

Z .~ Hv~+ct+g.j; i =

where y
~, z1, v~. a , H , f1, and g

~ are defined above. Then

the fILE’s of H, a , v1, and are:

H = 
~ 22~~21~ ’

=

v i y. 
1

( V . V .  V . )  
= ( 

~
) - (-H,I)’(HH ’+I )~ (-H ,I)( 

1

Hv.+a z1 r z~-z

A 1/mp,

0 
V. V.where x .~ is the ith largest eigenva lue of M , the rows of (U21 ,U 22 )

are the eigenvectors associated wi th the r smallest eigenv aiues of

M , and

to y.-y y.-y

Remark I. H ,a are uni que.

Application 2 is a generalization of the model considered

first by Gleser and Watson [1973] and later by Bhargava [1975].

The proof utilized in these papers cannot be generalized to cover

our case. Their model is a special case of Application 2, where

a = 0.

- - ~~~~~~ V.~~~~ V. —- -~~~~~~~~~ - - - .~~~ - - - V . - ---
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0 We will conclude this section wi th a model which can be con-

sidered a combination of the “error-in-variables ” model and the

usual linear regression model . In the model we discuss there are

some variables which are measured with error and other variables

wh ich are measured perfectly. Consider the following model :

y1 = v~+f~; i = 1,2 ,... ,m;

z. = Hv~+ctd~+g 1 ; i = 1 ,2,...,m;

where y~, v~, z~, H , v~, 
~ 

and g
~ 

are the same as in Appli cation 2,

a is an unknown rxs matrix , and d~ is a known sx l matrix. v .~ is the

variable which is measured with error and d~ is the variable which

is measured perfectly. We may apply Theorem 3.2.2 in a manner

similar to wha t we did for A p p l i c a t ion 2 to get MLE ’s of H , v ., and

0 a. If we do this an d use the fact that d = (d1,d2,...,d~
), we get

~pp l i c a t i o n  3. Let our model be

y.~ = v
~
+f

~
; i = 1 ,2,... ,m;

z.~ = Hv~
+ad

~
+g
~
; i = 1,2 ,... ,m;

where y,~., ~~ 
z~, H , v1, f1, and g1 are the same as in Application 2,

a is  an unknown rxs matrix , and d
~ 

is a known sxl matrix. The fILE of

H, a , v~ , and ~2 are :

H = 
~~22~~2l~ ’

a = ~~~~~~~~~~~~~~~~~~~~~~~~

0
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( = ~ V. ) = (
Yl ) - (-H ,I) ’ [(~~,I)(~~,r)’] [ ( H , r ) ( ~ l ) - ad.],

Hv.+ad. I Z,~ 1
‘I 1

= A~/mp ,I = p - r+ 1

where is the ith largest eigenva lue of M, the rows of (U21 ,U22 )

are eigenvectors associated with the r smallest eigenvalues of M ,

and

M = ~(c -(~~~~
3)dp (~~~d~d d~)(c )-(~~~~~)dpc~ d~d~Y

’)d 1 )’.

Remark I. H , a are unique MLE’ s.

3.4 Consistency of the Estimators

In this section we discuss the consistency of the estimators

from Section 3.2. We fi rst work with our reduced model . All the

results for the reduced model are ri gorously proved. For the genera l

model , we merely state our results since they fol low from the

results for the reduced model .

Let us consider U2,cx the estimators of U2.-~ in our model . In

order to make a discuss ion of the consistency of Uj -, and a meaningful ,

we have to place restrictions on U2 and U2 w h i c h  w i l l  make them

unique. Our arguments here are the saTe as ~n Section 1 .2 of

Chapter 1. Let (U* ,a*) be the unique m-~~he~-s of the class of

matrices (U 2 , cz) which satisfy U~ ~~F4 
= ad , where U~ has the

identity matrix as its last r column s . Let U~ be the unique fILE

of U which has the identit y matrix as its last r columns. In

() 

2
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Applicati on 2 and Application 3 of the previous section , we

satisfy this requirement. We w ill show that LJ~, ~~ are strongly

consistent estimators of U~, ~~~. First , we will prove some useful

lemmas.

Lemma 1. Assume that

m~
l *F (I ..dI (ddl) ’d) * 1

converges to a finite m atrix °. . Then

m~~M = m X*F4(I k.d (di y’)d)F~
X *1

goes almost surely to R+(1-t 1 )~~.I~ where

u r n  (m- (k-s))m~ = l i rn (rn-k)m ’.

0 Proof. Consider X~ wh ich is a pxm matrix. Each col umn of X~ has an

independent p-dimensiona l rornal distribution with covariance matrix

~
2.i . The mean of Xt is ~~~~~. X~F~ i s a pxk ma trix . Since F4 is a

column orthogonal matr ix , each coiumr of X~~, is distri buted

i ndependentl y with a o-di~ r- n sional normal d i stribution with

covariance ma trix e2’i~ . The mean of X*F4
’is s*F4. We have

m~~X*F4(I k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(3 4 1) = m~ *F (I dI(~d l d )Fi~ *
t + f l F *F (I d t (dd 1 ) 1 d )F1 *I

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

By our assumptio ns and Lnnm o 2 of Cha pter 1 , we have t ha t the 2nd

and 3rd ter ms or- the ri ght -ha n d side of (3. 4 .fl ~o almost surely to 0.

-V. ~~~~~~~~~~~~~~~~~~~ - —~~~~~~~ V .- -  ~~~~~~~~~~V. ~~~~~~~~~~~~~~~~~~~~~~ 
- -~~~ -—-~~~~-—---- -~~~~~~~~~~~
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By our assumptions , the 1st term goes to R . If we use Theorem 4.3.2

in Anderson [1958] we find that the last term has the same distribu -

tion as k-s

i~ 1 
u1u ,

where u .~ has a normal distribution independent of u~ (i � i) wi th

mean vector 0 and covar-jance matr ix cJ2.I~~. We know that

k—s k-s

~ ~ u~u~ = 
~~~~~~~~ 

~~~ u~u~/k -s
1 1  i=1

goes almost surely to (l_ t
1 )o

2.I~ . If we combine all the above

statements , we get

~ X*F4(Ik~dl (ddl )
~~d)F~x* 

2

Q.E.D.

0

Lemma_2. If R is finite of rank p-r , then the only matrix which has

the i den t ity as i t s  last  r columns and when multi p lied by R yields

0 i s U~.

Proof.

Since this is true for every m , it is true in the li m i t , i.e., U~R0.

Since R has rank p-r , it has a uni que r-dimensional space of eigen-

vectors associated wi th eigenva lue 0. Let us consider a matrix whose

rows form a basis for this e-igenspace . If this matrix is to have

the identity matrix as its last r columns , it is clear that this

matr ix must be U~. Q.E.D.

V.—



_ _  V.V.- - - -~~~~~~~~~ -— - - -- -~~~~~~~~~ -- - - - - - - -~~~-- -~~~~ - 

91

0 
Theorem 3.4.1. Under the assumption s of Lemma 1 and Lemma 2,

is a strongly consistent estimate of U~ .

Proof. By Lemma 1 , we know that m~~M goes dimost surely to

R+ (l-t 1 )o
2I~ . Since the eigenva lues of a matrix are continuous

functions of that matrix , we are able to conclude that the r

smallest eigenva lues of n~~M converge almost surely to the

smallest eigenva lue of R+ (l-t 1 )~
2i~ which is (l-t 1 )n

2. By

Lenina 2, U~ is the only matrix with the identi ty as it s last r

columns which satisf ies U~R 0. We may conclude that U~ is the

only matrix of the right form whose rows are eigenvectors

associated with (l-t1 )a
2 the smallest e ig enva lue of

Let U
~m 

be the esti m ate of U~ if we have m observat ions .

() Let U2~ be the estimate given in Theorem 3.2.2 used to generate

11* j2m’ .e.,

— 
~~~~~~~~~~~~~~~ ~ ~ tjj (2)~ ’_l (~ (1) 

~~ 
) ‘~ ~u~

2
~’

’
~
’1 
~U2m — ‘‘ 2m / 2m ‘ r’ ‘ 2m / 2m ‘ 2m / 2m / “ 2m

where U2m 
= (U !~ ,14~~). Since 2m~~~ 2m~ 

Ir~
U2m is bounded

almost surely. Let us pick any subsequence of U201. Since U2m is

bounded almost surely, there must exist a subsequence of this

subsequence which converges. Let U
2 denote  the convergent

subsequence. Also le t

C lim U
n~=

Every row of C is the limit of a sequence of eioenvectors of

m~~M assoc iated with one of the r srallest eieenvalue s. Since

- —-- - - - - - —- -~~~~~~~~~ - - -- - - -~~~~~~~~~ - —--- - - - V .-~~~~~~~~~~~~ - -- - —- - .-V.-
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o m~~M converges a lmos t  surel y to R+ (l-t 1 )o
2.I~ . each row of C must

equal some eigenvector of R+ (l-t 1 )ci2I associated with (l-t 1 )o
2.

Since

lim U2 
. U = ~c’ =

m-+~ to m

C is of full row rank and therefore its rows must span the space

of eigenvectors of R+ (1-t 1 )a
2I~ associated with (l-t 1 )c

2. We

already showed that U~ spans that same space. We therefore have

= (C (2)) (C ),c(2~) = ( C~
2
~y’c

where C =

Let A ’ denote the largest 2lement of A . We wil l now show

that — U~ goes to 0 almost surel y.

o I l H 1 I ( 1
~~2r (C(2)Y

l Cj~

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(3.4.4) (U~~~~~~ (C (2)Yl (c~
2
~~ J

The First term on the ri ght-hand side of (3.4.4),

JU 2 H H (U 2 )- (~~~~~ H, is arbitrar~ ly smal l s i nce U2 ~S

bounded almost surely and U~~ co nve ro~s to J~~~. Since (c~
2
~ ) ’ is

bounded and U~ goes almost surely to C , C~~~! j~
l 
~ 2 -Cj goes

almost surely to zero . Combining the above statements , we have that

U~7~ goes almost surely to U~ . We have ~bowr that for any subsequence

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~ - -~~~~~ -- - - — - -~~~~~~~~~~ ~~~~~~~ ——~~~~ - - — -  
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D 

of U~~ there exis ts a subsequen ce of that subseq ience which

converges to U~ almost surely. U~ mus t cnnvery almost surely

-

- 

- to tJ~. Q.E.D.

- I We now discuss the consistencj of ~ = U~X~F4d’ (dd’Y ’.

Theorem 3.4.2. If (dd’)~~ .rn converges to a ~atr ix with all

elemen ts f i n ite , then is a strong ly consistent estimate cf ~

where a~ sat isf ies U~:*F 4 a *d.

Proof. Note that

U~XtF4d’ (dd ’ ) l

—

= U~ (: *+E* )F 4d 1 ( d~~)

= U*=*F d~ (dd l ) l
~ L~~*F d 1( dd t )~~

Since U~ goes almos t su rel y to ~~~~~ U *F~ (dd Y
1 goes a lmos t

sure ly  to

U2
I*F4

d 1 (ddI )~~ a* 1 (d d )~~~ = a* .

If we apply Lemma 2 of Charter 1 , we ret that E*F4d (dd )~~

goes almos t sureiy to 0. ~o tnerefo~e have that ~~E*F4d
(dd1y l

goes almost surely to zero . 0.E.D.

We now show that the M ’E of ~2 in  the reduce d mo del i s not

consistent. We have already mentioned tha 4 t he r sma l lest

eigenva lues of m~~ - go almost surely to t1 c
2. Sirce \~Jk for

- 
-

- 

i = p-r~l ,... ,p, are the r smallest ei~ e nv al ues ~

_ _ _ _ _ _  V.— V. ~~~~~~~~~~~~~~~~~~ ~~~~~ V. ~_~~~V.V. ~~~~~~~~~~~~~~~~~~~~~~~~
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0 X*F4(I r_d 1 (dd1 )~~d)F~X*t/m, we have

~2 i P 1 a.s. 1 2a = A 1 — (A./m) -
~ —(l—t1 )ai p-r+1 ~ i=p-r+l 1

Straightforward substitution yields the followi ng result:

~*F (I dI (ddI) d)F’ *I/m R+ (l-t1 )a
2(I~-U~(U2U~Y

1U2).

Let us now consider the parameters in the general model . For

the definitions of all terms see Theorem 3.2.3 and the beginning

of Section 3.1. Let be the MLE of U1 which has the identity

as its last r’columns. Let a* be the corresponding value of &.

Let U~r cz* be the parameter matrices in the population which

satisfy U~ EF3 
= a*b, and U~ has the identity matrices as its

3 last r columns. We could prove the following theorem in an

analagous way to what we did for the reduced model.

Theorem 3.4.3. If our model is the model of Theorem 3.2.3 and if

N~~ *F4(Ik_dI (dd~)~~d)F~~
*I =

N 1 (F~F 1 )~ 
(F2F~)~

2F
4(Ik

_ dt (dd ’ ~~~~~~~~~~~~~~~ )~

converges to a finite matrix R of rank p-r , and if t1 =lim(N- (k-s))N~~,

then

1) N (X*(F 4(I~~dI (dd1 ) d)F~)x*I)goes almost surely to

R+(1-t1 )ci
2. Ip ;

ii) the rows of are ei genvectors of (F~F1 )~R corresponding to

eigenv alue 0;
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iii) U~ is a strongly consistent estimate of Ut;

iv) if converges to a finite matrix , then c&* is a

strongly consistent estimate of c**;

v) 
~~ ~ 

goes almost surely to (l-t 1 )o
2r/c.

i =p- r+ 1
Since

(a
2
) tr(XX I _F

1 
(F~ F1 ) F~ XF~(F2F~Y

1F2X’)

has a chi square distribution with cN-pm degrees of freedom, we

have
a.s.

(3.4.6) tr (XX’-F1 (F~F1 ) F ~XF~(F2F~Y’F2X’i/a (cN-pm) 
-
~

provided that cN-pm goes to as N does. If u r n  = t2, we have

a.s.
tr (XX ’—F 1 (FjF 1 ) FjXF~(F2Fp~~F2)Y)/Nc -

~ ~~ (l—s/c(l-t 2)).

It we combine the above statement and v) of Theorem 3.4.3, we get

that

;2 a~s. ~
2
~i +

Since p > r, and l-t2 u r n  > u r n  ~j-~- = 1-t , (m > k), ~
2 under-

estimates a2

0



C

CHAPTER 4

TESTING THE EXISTENCE OF UNKNOWN LINEAR
RESTRICTIONS IN A GENERA L LINEAR MODEL

4.0. Introduction

Let our model be the Potthoff-Roy model :

(4.0.1) X F1 EF2+E

where X is a cxN matrix of observations , F
~ 

is a known cxp

matrix , is an unknown pxm parameter matrix , F2 i s a known

mxN (N > m) matrix and E is a cxN error matrix whose col umns

are distributed independently with a normal distribution having

mean vector 0 and covariance matrix G2•I c (a
2 is unknown). In

this chapter we will be concerned with testing

(4.0.2) H0: U1~F3 ab versus H1 : U1~F3 ~ ab ,

where U1 is an unknown rxp matrix , F3 is a known mxk (m > k)

matrix , a is an unknown rxs matrix and b is a known sxk matrix.

In Section 4.1, we derive the likelihood ratio test statistic

for H0 versus H1. In Section 4.2, we find the asymptotic

distribution of the roots needed in the likelihood ratio

criterion . In Section 4.3, we use the asymptotic distributions

of the likelihood ratio test statistic to get asymptotic tests of

H0 versus H1. In Section 4.4, we show the tests from the preceding

section are consistent.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



4 .1 .  Likelihood Ratio Test Statistic

In this section we find the likel i hood ratio test of

H0: U1~F3 = ab versus H1 : U 1 EF3 ~ ab , wher. our model is given by

(4.1.1) X = F~~r2+E.

All variables are defined in the introduction to this chapter. Our

result can be summarized in the following theorem.

Theorem 4.1.1. If our model is given by (4.1.1) and we wish to

test the hypothesis H0: U1~F3 
= cib versus H1 : U 1~F3 ~ ab , then the

likelihood ratio test statistic is

tr(XX I
~F1 (FjF 1 )

l FjXF~(F2F~~~
l F2

Xl ) ~ cN

0 
A 1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where is ith largest eigenvalue of M, and

M = XtF4(I k
_d I (ddI )_l d)F ~Xt

1 ,

= ~~~~~~~~~~~~~~~~~

F4 
= ~~~~~~~~~~~~~~~~~~~~

d = b(F~(F2F~)~~F3)~~.

Proof. We need the maximum value of the likelihood when H0 is true

and when H1 is true. In Chapter 3, we derived the MLE ’s of U1, ~~, 
a

and ~
2 when the H0 is true (see Theorem 3.2.3). If we substitute

these estimators into the likelihood we get:

1~

_ _ _ _ _ _  ~~~~~~ -

.-
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2 ~ N —~~
2[(X—F1~F2)(x_F 1 F2)’]max L = (2na )Th c .e

0
= (21T )~~ 

cN(&2)-~ 
CNe

_
~ 

cN

= (2i~)~~ 
CNe

_•
~ 
cN~~1 

~ A .+tr(X~X ) + tr(X~X~~) +i=p-r+l 1

tr(X
~XE))]~~ 

cN

(4.1.2) = (2ite)~~ 
cN[1 

(~~~ + 
A 1+tr (XX’—F1 (F~F1 )

1 F~X~~(F2F~)
1

F2XI))]~~ 
cN ,

where is the ith largest root of M, and M and the variables which

define it are given in Theorem 4.1.1. For definitions of

X~, X~, X~, see Section 3.1.

We now get the maximum value of the likelihood when the

3 alternative is true. When the alternative is true , our model is

just X = F1 .EF2+E with no restrictions on ~. The columns of E have

the same distribution as under H0. The likelihood function is

2 2 N ~ a( tr(X F1 F2)(X F1~F2))(4.1. 3) L(X ,~,o ) = (2i~a )2  
C e

If we use standard mu ltivariate regression procedures , we

get that the MLE of is

(4.1.4) = ~~~~~~~~~~~~~~~~

The MLE of a2 is also easy to get:

(4.1.5) ~~ = ~~- tr(X-F1 EF2)(X~F1~F2)’,

= ~~[tr (XX’—F 1 (FjF 1 )
1 FjXF~(F2Fp

’F2X’)].

0

A
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When we substitute (4.1.5) (4.1.4) into (4.1.3), we get that the

maximum value of the likel i hood when the alternative is true is

(4.1.6) max L = (2ire )~~ 
cN~~1 tr(XX 1

~ F1 (FjF 1 ) FjXF~(F2F~) F 2X1)]
N.

1

• If we combine (4.1.2) and (4.1.6) we will get the likelihood

ratio test statistic of H0 versus H1 :

max L

— 

H0 — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
l max L p

H1 ~~~ + 
X i+tr(XXt

_F
l (FjF l

)_l FjXF~(F2F~
)_l F2

X1)]2cI~

Q.E.D.

Remark. It is clear that the likelihood ratio test statistic is

a func ti on of

3 1t2 
= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A~

2/cN
~1.

The numerator and denominator of the above expression are i ndependent

since is a function of Xt. the denominator is a function of
I =p-r+1

X~, X~, and X~, and X~ is independent X~, X~, and X~ (see Section

3.1 for definitions of X~, X~, and X~).

Remark II . The likelihood function can be made arbitrarily large

if F1 = I~ and F2 = 1N by taking E = X and = e where E is an

arbitrarily small positive number. Because of this , there does not

exist a test of the hypothesis U2~*F4 = ad versus U2E*F / ad in the

reduced model . What causes the problem is that under the alternative

hypothesis , there is nothing left to estimate ~
2 after we fit E . We

I

- ~~~~~~~~~~~~~~~~~
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will therefore assume that u r n  Nc-mp = when we test

= ab versus U1:F3 / cib.

4.2. Asymptotic Distribution of the Roots

In this section , we find the asymptotic distri bution of the

roots needed in the likelihood ratio tests. We are interested in

the r smallest roots of

IM_X I~ I 0 ,

where

(4.2.1) M = XtF4(Ik_d’ (dd’)~~d)F4XV
.

It i s hel pful to work with the r smalles t roots of

I(Na2)lM_
~*I~ I = 0.

It should be noted that q~* = (Na2)~~~.

We now prove a useful l emma which is similar to Lemma 1 of

Chapter 2.

Lemma 1. Let our model and hypothesis be given by

X = F1 EF2+E,

(J1EF3 ab ,

where X , F1, E , F2, E, U1, F3, a, and b are defined in the introduction

of this chapter. The roots of

(4.2.2) ~(No
2Y1M _ 0,

~ 

_ _ _  
_ _
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where M is given by (4.2.1) have the same di strib ution as the roots of

(4.2.3) IN
_ 1
u*U*+N

_
~C+DO

_4~*Ip I = 0,

where

/C1 ,1 ~~~~ ... E~ \
• c = I :  1~

~ 

Ci ,p_r . . •  Cp_r ,p_r ...

Ep_r . ..  0 /

Chh I 
= 

~~~~~
U
~~Ih 

+ 1
~h’N 

U
~h I ,

J’ h ,p-r+l \
Eh = ~~~~ •1 ~~~~~~ )

1O h,p

0 • . .  0\

~2N

0 0 ••. O

and is the ith largest eigenvalue of

(Na2)l(~*F(I_d1 (dd*)~~d)F,~ *I),

and LJ* is a pxk— s matrix whose columns have independent norma l

distributions with mean vector 0 and covariance matrix I~.

Proof. First, consider

= ~~~~~~~~~~~~~~~~C)

~

— —---

~ 

- - - - ~~--~~~--~~~~ =.-~~ -“ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , — ---~~—~~~~.. A
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When we take the square root (negative square root) of a matrix , it

is always the unique symmetric square root (negative square root).

The columns of Xt are independently normally distributed with

covariance matri x a2.I~. The mean of Xt is

A A
= (F~F1

)2E(F2F~
)2.

Now consider a
~~XtF4, 

where

A 1
F

4 
= (F2F~)2F3(F~(F2F~) F3)~~.

Since F4 is a column orthogonal matrix , each column of

is distributed independently with a norma l distribution having

covariance matrix I~. Next consider a
~~XtF4

V6 where V6 is a

matrix such that

0 V6V6 
= ‘k-s’ ~6~6 = Ik d ( d d ) d

~

d = b(F~(F2F~)
1 F3~~~.

Since V6 is a column orthogonal matrix, each column of a 1
XtF4V6

(which is pxk—s) is distributed wi th an independent normal distri-

bution having covariance matrix I~. The mean of o
~~XtF4

V6 is

E(0 1
XtF4V6) 

= o~~ *F4V6.

Consid er .

U a 1ri XtF4V6r2,

where and are orthogonal matrice s such that

-I
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(No2)~~r1E*F4v6r2 

(

~
F

1N 

:~ 
1:1 

) 

1:
and is the ith largest eigenvalue of

(a2N)
_

*F4V6V~F * (a 2N)~~~*F4(Ik
_ dI (dd1 )_ l d)F~:

*I .

It should be noted that the r smallest eigenvalues of the above

expression equal 0 by our hypothesis. We may write (4.2.2) the

following way:

I (No
2
Y

1 M - = ~N ’UUI _$*I~ I = 0.

Finally, we make the following substitution. Let

= U_o l r1~*F4V5r2.

Then each column of U~ has a normal distribution with mean vector

0 and covariance matri x I~ . We al so have

UU’ = U*U*I+rl~T C+DQ,

where C and D0 are defined in the statement of the lemma . The

l emma now follows . Q.E.D.

At this point we separate ~nto three cases

Case 1: k is fixed;

Case 2: t
1 
/ 1;

Case 3: k goes to infinity as N does , t1 
= 1;

0 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
1. 1 .2
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O where t1 u r n  (N-k+s)N 1 . We always assume that r (the number of
N--co

rows of U2), p (the number of rows in ~
) ,  and s (the row rank of

b and d) are fixed quantities.

For each case, we now present important results about the

asymptotic distribution of the roots. For Case 1 , we have the

following theorem :

Theorem 4.2.1. Assume that k is fixed. Let v~ = A
1
(o
2
)’ =

where is the ith largest root of (Na 2)1M_ 4 *I~ = 0.

Then the limiti ng distribution of (v p r+l~
vp r+2~• *  ~v~~ ) is

-~~~ v.12
2
_
~r(k~s~P+r)~~r( ~ ~~~~~~~~~~~ 

i=p-r+l 1

i=p-r+l 1

r 1 1O I’ r(~(k-s-p+r-l-i))r(~-(r+1-i))i=1

p p
Ii II (v . -v )

i=p—r+1 j=i+l 1

Proof. By Lemma 1 , we only have to consider the distribution of

the r smallest roots (
~~ 

= i=p-r+l ,p-r+2 ,...,p) of

(4.2.4) u*u~ 2C+D
O~~*Is I = 0,

where C, U~, and D~ are defined in Lemma 1.

For Case 1 we can utilize the proof given in TIsu [1940].

Equation (17) in Hsu is identical to our equation (4.2.4) wi th

the following correspondences:

-~1) 4
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) Hsu (17) (4.2.3.)

A (J*U*’

C C

U 0

D

V

All that we have to do is fol low the steps in Hsu ’s proof. Q.E.D.

Remark. The distribution of the roots given in Theorem 4.2.1 is the

same as the joint distribution of p1 
where p

1 
is the ith largest root

of

lB - p l j = 0

and B is defined by

k-s-p+r
8= ~ u.u~1=1 1

where the u~ are independently distributed wi th a norma l distribution

wi th mean vector 0 and covariance mat rix

For Case 2 an d Case 3, we make the following assumptions.

Assumption 1. The matrix

(4.2.5) (o2N)~~~*F4(I k
_ d 1 (dd’ ) d)F~~*I

converges to a finite matrix (ci 2 Y 1R of rank p-r.

Assumptio n 2. = y
1

+ O ( v ’~~) where 1iN is the ith largest

eigenva lue of (4.2.5) and is the ith largest eigenv alue of

(a2)~~R.

~ 

~~~~~~~~~~~~~~~~~ _ _ _  
2:.~~~. 22~~ ~A
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We now state and prove several theorems fOr Case 2.

Theorem 4.2.2. Assume that u r n  (N-k)N~ = t1 / 1 , and that

Assumptions 1 and 2 hold. Let

= (N~~-k)(N-k)~~; i = p-r+l ,p-r+2 ,.. .,p;

where is the ith largest ei genvalue of (No 2Y
1M. The limiting

distribution of (v~~ +1 ”~p r+2’~ 
. .,v~,) is the same as the distribution

of the r roots from

j ( u/ t 1-l)k1- VI r J = 0

where Q1 has the r-dimensional matrix norma l distribution (see

Lemma 2 of Chapter 2).

Proof. By Lemma 1 , we only have to consider the distribution of the

r smallest roots (4
~N

: i = p-r+l , p-r+2,.. .,p) of

(4.2.5) 1N lU*U*I+N~~C+Do
_
~*I~ 1 = 0,

where C, U*, an d D~ are defined -in Lemma 1.

If we multiple each matrix inside (4.2.5) by N(N-k)~~~ and let

=

=

then (4.2.5) becomes

~~~~~~~~~~~~~~~~~~~~ = 0.

The above equation is exactly the same ar, equ~tinn (2.2.12) with Z 0.

/

_______ ____________________________________ ______ A
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We therefore may follow the proof of Theorem 2 .2.2 with Z = 0. The

theorem is therefore proved . Q.E.D.

If we use Theorem 2 in Anderson [1951b], we ha ve

Theorem 4.2.3. Assume lim (N-k)N 1 = t1 / 1 and Assumpti ons 1 and 2

hold. Let

= 
~~~ +~~ “k) ; i = p-r+l , p-r+2,...,p;

where is the ith largest eigenvalue if (Na~Y1M. The limiting

distribution of 
~ p r +1’~p r+2 ’ • • •  ~~~~ 

is

r
,~ r .11’~p-r+i p p

ii r(2~(r+1+i))J
1e 1 — I  

‘~ (p. — p . ) .
1=1 i=p-r+l j=i+l 1 ~

We conclude wi th several theorems for Case 3.

Theorem 4 .2.4. Assume that k -‘- as N -* ~~~ , that u r n  (N- k)N 1 
= 1 ,

and that Assumptions 1 and 2 hold. Let

v1 = (~~~j~
- •~ - ~~~ )Nk~~~; I = p-r+l , p-r+2,...,p;

where is the ith largest eigenvalue of (No 2Y 1M. The limiting

distribution of (v p_ r+l~
vp_ r +2I~ •~~

vp) is the distribution of the

r roots of

lQ - V Ir I = 0

where Q has the r-dimensiona l matrix normal distribution (see

Lemma 2 of Chapter 2).

D
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Proof. By Lemma 1 , we only have to cons der the distribution of

the r smalles t roots (t~ : i = p-r+l ,p-r+2,...,p) of

(4.2.6) ~N~~U*U*
1 +W 2C+Do~$*I~ I = 0,

where C, U*, and D
~ 

are defined in Lemma 1.

If we multiply each matrix inside (4.2.5) by N(N-kY1 and let

=

4, =

then (4.2.5) becomes

l (N_ k)_l U*U*I +N~(N_k)
_ 1

C+Dl I = 0.

The above equation is identical to equation (2.2.15) with Z = 0.

Q We may follow the proof of Theorem 2.2.4 with Z = 0 to get the

required result. Q.E.D.

Using Theorem 2 in Anderson [1951b], we have :

Theorem 4.2.5. Assume that k ~‘- as N -‘- ~~~ , that u r n  (N-k)N 1 
= 1 ,

N-~o
and that Assumptions 1 and 2 hold. Let

= 
~~~~ 44 

- .g~j)N k~~; I = p-r+l , p-r+2,...,p;

where 44 is the ith largest eigenva lue of (Na 2) 1 M . Then the limiting

distribution of (vp_r+l~
vp_r+2~•••~

Vp) is

2~r/2[ ~ r(1 (r+1 j))]~
i e i P r + 1 1 

~
1=1 i-p -r+l j=i+l 1 .)

I—.

’( I
4,

- ~~~~~~~~~~~~~ - ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ _A
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4.3. Asymptoticlests of U1 EF~~ b Versus U1~F~~s~

In this section , we use the asymptotic distribution s of the

smalles t roots given in the proceding section to get the asymptotic

tests based on the likelihood ratio statistic derived in Theorem

4.1.1 . We a l so use the follow ing lema :

Lemma 1. Let -

(4.3.1) e = (o2)1tr(XX ’-F1 (F~F1Y
1F~XF~(F2F~)

1F2X ’).

Then (Nc-mp~~~(e-(Nc-mp)) converges in law to a normal random variable

wi th mean 0 and variance 2. We also have that (Nc-mp) 1o goes almost

surely to 1.

Proof. We have shown that e has a chi-square distribution with Nc-mp

C degrees of freedom (see the end of Section 3.4). The lema now

follows from standard theorems. Q.E.D.

By Theorem 4.1.1 , the likelihood ratio test statistic is

A ~~ +1’~~~~‘1 — 
‘“2 ~

where

A2 = L X 1/~a 6),i=p-r+l

A .1 is the ith largest eigenvalue of M, and e is defined by (4.3.1).

In terms of the eigenvalues ~~~~ . . ,4~~
) of (Na2Y

1M we have

A2 = N ~~ 44/0.i =p-r+1

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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We now break up our discussion of the asymptotic tests into

three parts which correspond to the three cases discussed in the

preceding section.

Part 1. Case 1: k fixed .

When k is fixed , we have the fol lowing theorem:

Theorem 4.3.1. If our model is given by (4.0.1), and we wish to

test the hypothesis H0: U1~ F3 = ab versus H1 : U1~F3 / ab when k is

fixed , then the asymptotic nul l distribution of

(cN-m p)A2 =

where A.1 is the likel ihood ratio test statistic , is a chi-square

distribution wi th r(k-s-p+r) degrees of freedom. The a level

0 asymptotic test of H0 versus H1 would be to reject H0 when

(cN-m p)(A~
2
~~ -l) > Xr (ksp+r )(l~~

)
~

and do not reject otherwise , where x~(B) is the Bth fractile of a

chi square distribution with d degrees of freedom.

Proof: When k i s fixed , the asymptotic distribution of N 44
i=p-r+1

can be easily obtained using the remark fol lowing Theorem 4.2.1.

The limiting distribution of N 44 is the same as the
i=p-r+l

distribution of

k-s-p+r
tr(B) = tr 

~ 
~~~~

where u~ are independently distributed with a normal distribution

C)

-_

~ 

~~~~~~~~ ~~. --~~~~~~~~-- -- --~~~~~~~~~!~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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having mean vector 0 and covariance matrix I . Since each diagonal
k-s-p+r r

element of ~ u1u~ has a chi-square distribution wi th k-s-p+r1=1
degrees of freedom, and since there are r independent diagonal elements,

the distribution of the tr(B) is a chi-square distribution wi th

r(k-s-p+r) degrees of freedom. We conclude that the limiti ng distri-

bution of N 44 (for Case 1) is a chi-square distribution wi th
i=p-r+1

r(k-s-p-r) degrees of freedom.

We know by Lema 1 that 0/(Nc-mp) goes almost surely to one.

Since 0 and 44 are independent , we get that . -

-

(Nc-m p)(A~
2”
~~-1) = N 44/(0/(Nc-mp))

i=p-r+1

has a limiting chi-square distribution with r(k-s-p+r) degrees of

freedom. Q.E.D.

0 
_Part 2. Case 2: t1 = lim (N-k)N~ / 1.

N-,co

When the number of parameters increases wi th the sample size in

such a way that t1 = u r n  (N—k)N~ / 1 , we use the followi ng theorem

which gives us the needed asymptotic test:

Theorem 4.3.2. If our model is given by (4.0.1), an d we wish to

test the hypothesis H0: U1~F3 = ab versus H1 : U1~F3 / ab when

/ 1 , then the asymptotic null distribution of

A3 = ( Nc-pm —~)~(k~~(Nc- pm)A2-k~r),2r(Nc-pm)+2kr

__ — —_ .. —i —b , • . . . - - —. . - .~~



— ~~ — - .  .— . .- - , .~~- -.- -~~~~~~~~~---~~~

112

where A2 = A~j
2”
~~-l , and A 1 is the likel i hood ratio test statistic ,

is a standard norma l distribution. The a-l evel asymptotic test

would be to reject H0 when

A3 
> Zi ,

and do not reject otherwise, where ZB is the B fracti le of a standard

normal distribution.

Proof. Consider

(
k ’
~(Nc-pm)A 2-k~r = 

~~O/(Nc.pm) 
- k3r,

(Nq- k)k~~
_k
~r[(o/(Nc_pm))_l]

(4 3 2) — i=p-r+l
— 

o/(Nc— prn)

Since o/(Nc-prn) goes almost surely to one, we have that the

l imiti ng distribution of 
-

k~~(Nc-pm)A2-k~r

is the limi ti ng distribution of

(4.3.3) (N44-k)k~~-k~r((e/(Nc-pm))-l).i=p-r+l

When t1 / 1 , the asymptotic distributi on of

A r
(N~~-k)(k~~

2 = ((N-k)/k)~ ~ vi=p—r+ l 1 j
~ 

p—r 1

can be easily obtained from Theorem 4.2.2. The limiting distribution

of is the same as the distribution of tr(l/t1 -l)
3Q1, where

i=p-r+lf o
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Q1 has an r dimensional matrix normal distribution. Since the

distribution of tr(l/t1
_ l )*Q1 is a normal distribution with mean

zero and variance 2r(l/t1-l), it follows that the limiting distribution

of

(N~’~ k)k~~1 p-r+1 1

is a normal distribution with mean 0 and variance 2r.

We also know from Lemma 1 that

(Nc- pm)~~((e/(Nc-pm))-1)

is asymptotically distributed as a normal random variable wi th mean 0

and variance 2. We therefore have that

k~r((0/(Nc-pm))-l)

has a limiting normal distribution with mean 0 and variance

u r n  2kr2/(Nc—pm).
N~ co

If we combine the above three paragraphs and recall that 0

and 44 are independent, we have that
i= p-r+1

A A
k 2(Nc-pm)A2-k2r

has a l imiting normal distribut ion with mean 0 and variance

2r+2r2 u r n  k/(Nc-pm)

since

[2r+(2r2k/(Nc-prn)]~~=(Nc-pm)/(2r(Nc-pm)+2kr
2).

We have fi nall y that

f~)

_ _ _  ~~ _ _ _  _ _ _ _ _ _ _  
- 

~~~~~~
. .
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Nc-pm 
2)*(k~~(Nc_ pm)A2~k~r)

2r(Nc-pm)+2kr

has a l imiting normal distribution wi th mean 0 and variance 1.

Q.E.D.

Part 3. Case 3: k ÷ as N -
~ but t1 = lim (N-k)N 1 = 1.

We conclude t hi s sec tion wi th a theorem w hi ch gi ves the

asymptotic test of H0 versus H1 for Case 3.

Theorem 4.3.3. If our model is given by (4.0.1), and we w is h to

test the hypothesis H0: U 1~F3=ab versus H1 : U 1EF3/ab when

u r n  (N- k)IN = t1 = 1 and k -* as N -
~~ ~~~ , then the asymptotic null

distribution of ft
A3 = (Nc-pm)(2kr)~~A2-(kr/2)

3,

where A2 = A 1
2/CN and A 1 is the likelihood ratio test statistic

is a standard normal distribution . The a-level asymptotic test would

be to rejec t H0 when A3 > Z(l...a)~ 
and do not reject otherwise , where

ZB is the 8th fractile of a standard 
normal distribution.

Proof. Consider

A 3 = (Nc-pm)(2kr~~ A2-(kr/2)~,

N( 2kr) 44
— i=p-r+l ‘k— 

0/(Nc-pm ) 
— 

~ r,~. ~

N(2k r)~~ 4,~_ (kr/2)2_ (kr/2)~[(o/(Nc_pm))-l]
— i =p-r+1 1
- ______

0

-- ---f-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~ - - ~~~~~~~~~~~~~~~~~~ --
- - --- -

~~
--- ---- — —_  
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Since N ((o/(Nc-pm))-l) goes in law (by Lemma 1) to a normal random

variabl e with mean 0 and finite variance, and s ince for Case 3,

lim k/N 0, we have that

(e/(Nc-pm) )-l)

goes in law to a random variable which is constant at zero.

By Lemma 1, we may state that 0/ (Nc-pm) goes almost surely to 1.

Since 0 and 44 are independent, we know that the asymptoticI =p- r+l
distri bution of A3 is the, same as the asymptotic distribution of

(4.3 4) N(2krY~ ~ 44 - (kr/2)~. 
-

1 p-r+1

For Case 3, the asymptotic distribution of the above expression

can be easily obtained from Theorem 4.2.4. Since the limiting

0 distribution of

= (N/N-k)[f~k
4z44-rI~] 

-

i=p-r+1

is the same as the distribution of tr Q where Q has the r

dimensional matrix normal distri bution , v1 has a limitingi =p- r+ 1
normal d i str ibution with mean 0 and var iance 2r. Si nce

u r n  = 1 , we can conclude that the limiting distribution of

(4.3.4) is a standard normal distribution. Q.E.D.

4.4. Consistency of the Tests

In this section , we discuss the consistency of the tests from -

the preceding section . A test is consistent if the power of a test

goes to one as the sample size increases when a fixed alternative

Is assumed to be true.

j  

- ~~~~~~~~~~~~ .~~~~L~~ .L: :~~~~~ L ’  - -. - - -. --
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We now give a description of what our fixed alternative

will be. For each N , let us pick = EON’ so that the rth

smalles t eig~nva lue of

(4.4.1) £i
1 E
~~

F
4
(I

k
_ d ’ (dd ’ ) 1

d)F4~~,~,

is a fixed positive number. F4 and d are defined in Theorem 4.1.1,

and
= (F~F1) ON (F2F2)

This is a very reasonable definition of fixed alternative. We also

assume that the matrix given by (4.4.1) converges to a finite matrix

R.

For Case 1 , we have the follow ing theorem :

0 Theorem 4.4.1. The asymptotic test given in Theorem 4.3.1 (Case 1:

k fixed) is consistent.

Proof. The test statistic given in Theorem 4.3.1 is

(Nc-mp )A2 = (Nc-mp)( A~
2’

1
~~— l )

= N 44/(e/(Nc-mp))
I =p- r+ 1

where e is given by (4.3.1) and 44 are the eigenvalues of M (see

Theorem 4.1.1). By Lema 1 of Section 3.2, o/(Nc-mp) goes almost

surely to one. By I) of Theorem 3.4.3, we have tha t

N~~M = N X *F4(I k
_ d1 (ddIY

~d)F~
X*I

“- - - -

~ 

~~~~~~

.
--~~~- ~~~_ _ __ ; _~~~~~_~~~~_ . 

.

~~~~
-
- — _~~~~ —-~~~ -~~~ -~~~~~- -.~~~~~ - .  ~~
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0 goes almost surely to R+(l-t 1)a 2I~~ where t 1 = u r n  (N-k)N 1 . Since

k is fixed , t1 
= 1. Therefore, in this case, M goes a l mos t surel y

to R. Since the eigenva l ues of a matrix are continuous functions of

that matrix , the rth smallest eigenvalue of M goes almost surely to

the rth smallest eigenvalue of R. For our fixed alternative (see

the paragraph preceding this theorem), R = R0 and the rth smallest

eigenvalue of R0 is some positive number. We can conclude that

~~~~~ goes almost surely to positive infinity . Therefore (Nc-mp ) A2
goes almost surely to positive infinity . If we apply Theorem 2.4.1 ,

our theorem (Theorem 4.4.1) follows. Q.E.D.

For Case 2, t1 / 1 , we have a similar result:

O 
Theorem 4.4.2. The asymptotic test given in Theorem 4.3.2 (Case 2)

is consistent.

Proof. Let us consider

(N44_ k)k~~_ k2r[ (o/(Nc_pm ))_ l]

k 2 (Nc_pm)A 2
_k~r = 

i=p-r+l 
e/(Nc— prn)

which is equation (4.3.2). By Lemma 1 , e/(Nc-pm) goes almost surely

to 1. By I) of Theorem 3.4.3 we have that

N 1M = N X *F4(I k_dl (dd 1 ) l d)F~
X*1

goes almost surely to R+ (l-t1 )c
2I , where t1 

= u r n  (N-k)W 1 . Sincep 
N-+co

the eigenvalues of a matrix are continuous functions of that matrix,

the rth smallest eigenva lues of M goes almost surely to the rth

r:) 

~~~~~~~~~~~~~~~~~~~~~~
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smallest eigenvalue of R. For our fixed alternative (see the

paragraph preceding Theorem 4.4 .1) , R R0 and the rth smallest

elgenvalue of N 1M goes almost surely to a quantity greater than H
(l-t 1)o 2 . We therefore have that 

~~-r+l goes almost surely to

a quantity greater than l-t 1, and that 
~~ r+l 

- 
~~

- goes almost surely

to a quantity greater than 0. We conclude th.it
p A -

(Nq~-k)k ‘
i=p-r+ l 1

goes almost surely to pos,itive infinity . A
3 

then goes to positive

i nfinity . We now may apply Theorem 2.4.1 to complete the proof of

this theorem. Q.E.D.

For Case 3, we have the following theorem.

() Theorem 4.4.3. The asymptotic test described in Theorem 4.3.3 is

cons i sten t.

Proof. We omit a proof since the proof is similar to the proofs

for Theorem 4.4 .1 and Theorem 4.4.2. 

~1I

t o
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This report considers the multivariate linear regression model X = 1:1= 1:2

+ E, where X is a c x N matrix of observations , Fl is a known c x p matrix

of covariat es , F~ is a known m x N design matr ix~ (contai niflg values of

independent variables in the regression), and =~
‘
is an unknown p x in matrix of

regression coefficients assumed under a null hypothesis H~’ to satisfy a system~
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20 Abstract

/ -
A Lof linear restraints of the form H : U = F ab, where F : m x k and0 1 3 3 ~~~~~~~~~~~~

b: s X h are known matrices , and U1 : r x p and a: r x s Cs ~~r ~~p)areunknown matrices of restraint coefficients. The error matrix x N is
assumed to have column s which are statistically independent , mul tivariate
normal random vectors with common mean vector 0 and common unknown matrix
~ .) ~~~~~~~~~~~~~~~~~~~~~~~~

Chaptex’s\l and 2 consider the no-covariate case; that is , cp,  F1
111 = B, F3 = ¼’-~ 

= k. In Chapter 1, the maximum likelihood estimators
(MLE ’s) of the unknown parameters B, a, ~ , and E are found (under the ass-
imiption that H~ is true). Consistency of these estimators is discussed and

.~several specia! cases are presented. In Chapter 2, the likelihood ratio
test statistic for testing H

0 against general alternatives is derived , and
a sequence of asymptotically consistent tests is obtained . Here , “asymptotic ”
means that N + ~ and that k, the number of columns of ~ , may or may -not
increase to infinity as N -

~~ ~~.

Chapters 3 and 4 obtain corre sponding MLE’ s and asymptotically consistent
tests of H0 in the general case, but under the additional assumption that

= ~~~~ where a2 > o is unknown. -
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